P. Maurer

ENS Rennes

Recasages: 121, 122, 126.

Référence : Perrin, Cours d'Algèbre & Duverney, Théorie des nombres

Théorème des deux carrés

1 Définitions et notations

On note $\mathbb{Z}[i] := \{a+ib : a \in \mathbb{Z} \text{ et } b \in \mathbb{Z}\}$ l'anneau des entiers de Gauss. On définit sur $\mathbb{Z}[i]$ l'application $N: \mathbb{Z}[i] \to \mathbb{N}, \ a+ib \mapsto a^2+b^2$. Pour $z \in \mathbb{Z}[i], \ N(z)$ est appelé la norme de l'entier de Gauss z. On remarque que N est multiplicative : $\forall z, z' \in \mathbb{Z}[i], \ N(zz') = N(z)N(z')$.

On note $\Sigma := \{n \in \mathbb{Z} : \exists a, b \in \mathbb{Z} \mid n = a^2 + b^2\}$ l'ensemble des entiers qui s'écrivent comme somme de deux carrés.

2 Préliminaires

Proposition 1. $\mathbb{Z}[i]$ est euclidien pour l'application N, donc principal.

Démonstration. Soit $x, t \in \mathbb{Z}[i]$, avec t non nul. On écrit z/t = x + iy avec $x, y \in \mathbb{C}$, et on note q = a + ib, où a et b sont les entiers les plus proches de x et y. On a alors $|x - a| \le \frac{1}{2}$ et $|y - b| \le \frac{1}{2}$, donc $\left|\frac{z}{t} - q\right| \le \frac{1}{\sqrt{2}} < 1$. Posons r = z - qt. Alors $r \in \mathbb{Z}[i]$, et on a r = t(z/t - q), donc :

$$|r| \le |t| \cdot |z/t - q| < |t|$$

On en déduit N(r) < N(t).

Lemme 2. L'anneau $\mathbb{Z}[i]^{\times}$ des inversibles de $\mathbb{Z}[i]$ est $\{\pm 1, \pm i\}$.

Démonstration. Soit $z = a + ib \in \mathbb{Z}[i]^{\times}$, et z' son inverse. Alors N(z) N(z') = 1, donc N(z) est inversible dans \mathbb{N} : ce ne peut être que 1. On en déduit $a^2 + b^2 = 1$, et les seuls entiers de Gauss solution sont donc ± 1 et $\pm i$. Réciproquement, il est clair que ces derniers sont inversibles.

Lemme 3. Soit p un nombre premier impair.

On a l'équivalence $p \in \Sigma \iff p$ est réductible dans $\mathbb{Z}[i]$.

Démonstration.

Soit $p = a^2 + b^2$. Alors p = (a + ib)(a - ib) dans $\mathbb{Z}[i]$. De plus, N(a + ib) = N(a - ib) = p > 1, donc a + ib et a - ib ne sont pas inversibles. On en déduit que p est réductible dans $\mathbb{Z}[i]$.

Soit p = xy avec $x, y \in \mathbb{Z}[i]$ non inversibles. Alors $p^2 = N(p) = N(x) N(y)$. Comme p est premier et que N(x), N(y) > 1, on en déduit que p = N(x), donc $p \in \Sigma$.

Lemme 4. Σ est stable par multiplication.

Démonstration. Soit $x, y \in \Sigma$. Alors il existe $z, z' \in \mathbb{Z}[i]$ tels que x = N(z) et y = N(z'). On en déduit que xy = N(z) N(z') = N(zz'), donc $xy \in \Sigma$.

3 Théorème(s) des deux carrés

Théorème 5. Soit p un nombre premier impair. Alors $p \in \Sigma \iff p \equiv 1[4]$.

Démonstration.

D'après ce qui précède, on a $p \in \Sigma$ si et seulement si p est réductible dans $\mathbb{Z}[i]$. Ce dernier étant factoriel (car principal), p est réductible dans $\mathbb{Z}[i]$ si et seulement si $\mathbb{Z}[i]/(p)$ est non intègre.

Par ailleurs, de l'isomorphisme $\mathbb{Z}[i] \simeq \mathbb{Z}[X]/(X^2+1)$ on déduit :

$$\mathbb{Z}[i]/(p) \simeq \mathbb{Z}[X]/(X^2+1,p) \simeq (\mathbb{Z}[X]/(p))/(\overline{X^2+1}) \simeq \mathbb{F}_p[X]/(X^2+1)$$

Donc:

$$p$$
 est réductible dans $\mathbb{Z}[i] \iff \mathbb{F}_p[X]/(X^2+1)$ est non intègre $\iff X^2+1$ est réductible dans $\mathbb{F}_p[X]$ $\iff X^2+1$ a une racine dans \mathbb{F}_p $\iff -1$ est un carré modulo p $\iff (-1)^{\frac{p-1}{2}}=1$ $\iff p\equiv 1[4]$

Corollaire 6. Soit $n \in \mathbb{Z}$, écrit sous forme factorisée $n = \prod_{p \in \mathbb{P}} p^{v_p(n)}$, où \mathbb{P} désigne l'ensemble des nombres premiers. On a l'équivalence :

$$n \in \Sigma \iff \forall p \in \mathbb{P} \quad (p \equiv 3[4] \implies v_p(n) \equiv 0[2])$$

Démonstration.

 1^2+1^2), pour tout $p\equiv 1[4],\ p\in \Sigma$, donc comme Σ est stable par multiplication, le produit de droite est un élément de Σ , et le produit de gauche s'écrit comme un carré : on en déduit que $n\in \Sigma$.

 \Longrightarrow Soit $n \in \Sigma$, avec $n = a^2 + b^2$. On écrit $n = \delta^2 (a'^2 + b'^2)$ avec $\delta = a \wedge b$, de sorte que $a' \wedge b' = 1$.

Soit p un diviseur premier impair de $a'^2 + b'^2$. On va démontrer, en raisonnant par l'absurde, que p est réductible dans $\mathbb{Z}[i]$: ainsi, on aura $p \equiv 1[4]$. Dans ce cas, tout diviseur premier de p congru à 3 modulo 4 vérifiera $p|\delta^2$, donc $v_p(n) \equiv 0[2]$.

Supposons donc que p est irréductible dans $\mathbb{Z}[i]$. Comme p divise (a'+ib')(a'-ib'), d'après le lemme de Gauss, p divise a'+ib' ou a'-ib'. Or, pour $z \in \mathbb{Z}[i]$, on a :

$$p | z \Longleftrightarrow \exists z' \in \mathbb{Z}[i] \quad p = zz' \Longleftrightarrow \exists z' \in \mathbb{Z}[i] \quad \bar{p} = \bar{z}\,\overline{z'} \Longleftrightarrow p | \bar{z}$$

Donc si p divise a'+ib', il divise aussi a'-ib', et inversement : p divise donc ces deux éléments. Dès lors, on peut en déduire que p divise 2a' et 2ib'. Comme p est impair, on en déduit que p divise a' et b': ceci contredit que $a' \wedge b' = 1$.