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Introduction
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Wind gusts are small-scale wind
fluctuations that are by nature
intermittent.

Given a time scale τ (here 3 seconds) and a
threshold δ (here 1 m/s), characterising
intermittent fluctuation
∥∆U(τ)∥= ∥U(t+ τ)−U(t)∥> δ having non
Gaussian properties

▶ Some predictive frameworks are ready to use, but assuming Gaussian statistics.

▶ Goal : develop a stochastic model that take into account Kolomogorov’s refined
theory. This involves stochastic processes with memory.

▶ Kolmogorov’s theory predicts multiscaling such as anomalous power-laws emerging at
the level of the velocity increments : E[|∆U(τ)|p]≃ τζ (p), with ζ non-linear function.



Plan of the talk

1. Modelling with Volterra processes in turbulence
▶ Physical context: multifractality in turbulence
▶ Effect of Volterra kernels in the statistics

2. A weak comparison theorem for integrated Volterra processes
▶ The martingale approach
▶ Path derivatives, functionnal Itô formula and PPDEs
▶ Main result

3. Applications
▶ Applications in view of the modelling
▶ Application to the weak convergence of Markovian approximations
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1. Modelling with Volterra processes in turbulence

▶ Navier-Stokes equation:
∂t⃗u+ u⃗ · ∇⃗u =−∇p+ 1

Re ∆⃗u
▶ Energy dissipation:

ε(t,x) = ν

2 ⟨trace∇
T u∇u)⟩(t,x)

▶ In Lagrangian setting,

Xt =X0 +
∫ t

0
u(s,Xs)ds

εt =
ν

2
⟨trace∇

T u∇u)(t,Xt)⟩

A direct numerical simulation of 2D
turbulence, provided by Nicolas Valade
(Calisto Team INRIA)



(1) - Physical context: multifractality in turbulence

Kolmogorov’s refined theory for fluctuations of the energy dissipation ε (can be seen as the
volatility behind the velocity U): [Kolmogorov, 1962] [Frisch and Parisi, 1985] [Frisch, 1995]:

▶ stationarity and scaling : E[εt] = ντ
−2
η (Kolmogorov 1941);

▶ log-normality of ε : with Var[logεt]≃ log
(

τL
τη

)
; τL = 1

⟨∥u∥2⟩(t)
∫+∞

0 ⟨u(t+θ)u(t)⟩dθ

▶ multiscaling of the one-point statistics: E[εp
t ]≃

(
TL
τη

)ζ (p)
, where ζ (p) is a non-linear

convex function;

▶ power-law scaling for the coarse-grained dissipation and the velocity: in the inertial range,
τη ≪ τ ≪ TL,

E
[∣∣∣∣1τ

∫ t+τ

t
εs

∣∣∣∣p]≃ τ
ζ (p),

E[|U(t+ τ)−U(t)|p]≃ τ
ζ (p).
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(1) - Modelling with Volterra processes

We construct a stochastic model for ε in the form εt = ε exp(γVt − γ2

2 VarVt), where V is a
Gaussian process to be determined, ε ∈ R+, and γ > 0.

We find different proposals for the choice of V in the literature, in the form of stochastic Volterra
processes:

▶ In [Forde et al., 2022], the authors consider the fractional Brownian motion of
Riemann-Liouville Vt =

∫ t
0(t− s)−

1
2 +HdWs. They demonstrate that for γ ∈ (0,

√
2), the

measure ξH(dt) = exp(γVt − γ2

2 VarVt)dt is locally multifractal outside of zero in the limit
H → 0, i.e., for all t ∈ (0,1),

lim
τ→0

log(limH→0E[ξH([t, t+ τ])p]

log(τ)
= ζ (p)+p,

with ζ (p) =− 1
2 γ2(p2 −p).

▶ [Letournel, 2022] proposes in his thesis to consider the stationary process

Vt =
∫ t
−∞

[
(t− r+ τη )

H− 1
2 − (t− r+ τL)

H− 1
2

]
dWr, which is well-defined for H = 0, and in

this case satisfies E[VsVt]≃ log+
1

t−s for τη ≪ s < t ≪ τL, as well as Var(Vt)∼ log(τL/τη )
in the limit τL/τη −→+∞. However, no rigorous proof of multifractality is provided.
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(1) - How to compare the effects of Volterra kernels ?

We aim to find a stationary, locally multifractal process that is less expensive to simulate than
fBm as H → 0.

▶ To achieve this, we will demonstrate a comparison result for integrated EVS models. Let
T > t0 > 0. For b measurable, K,K ∈ L2([0,T],R), and φ : R→ R sufficiently regular, we
define

XT =
∫ T

t0
b(s,Vs)ds; Vs =

∫ s

0
K(s− r)dWr

XT =
∫ T

t0
b(s,Vs)ds; Vs =

∫ s

0
K(s− r)dWr,

and we are interested in the "weak" error ET = |E[φ(XT)]−E[φ(XT)]|.
▶ Note that for b(s,x) = exp(γx− γ2

2 VarVs), φ(x) = xp, t0 = t, T = t+ τ ,

K(s− r) = (s− r)H− 1
2 , we have

E[φ(XT)] = E[ξH([t, t+ τ])p] = E

[(∫ t+τ

t
exp(γVs −

γ2

2
VarVs)ds

)p]
.

▶ Thus, controlling ET allows us to measure how much an approximation of V by V impacts
the local multifractality of the induced Gaussian measure ξ .
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2. A comparison theorem for integrated Volterra processes

E[φ(XT)]−E[φ(XT)] =?

▶ Usually, weak error expansions (e.g, for Euler scheme) are done
with the Itô formula and the Kolomogorv PDE satisfied by
u(t,x) = E[φ(Xt,x

T )].

▶ In this case, not possible because Vt is not a semimartingale in
general and not a Markov process

▶ We will use a recent technique to obtain martingales and recover
Markovianity, at the price of the extension of the domain of the x
variable to a functionnal space



(2) - The martingale approach

▶ We consider the filtration Fs = σ(Wr ; r ∈ [0,s]) for s ∈ T. The orthogonal decomposition
from [Viens and Zhang, 2019] then writes:

∀s ≥ t ∈ T, Vs =
∫ t

0
K(s− r)dWr︸ ︷︷ ︸

Θt
s ∈ Ft

+
∫ s

t
K(s− r)dWr︸ ︷︷ ︸

It
s ⊥⊥ Ft

.

▶ We derive that for any test function φ : R−→ R,

E[φ(XT)|Ft] =E
[

φ

(
Xt +

∫ T

t
b(Vs)ds

)∣∣Ft

]
= E

[
φ

(
Xt +

∫ T

t
b(Θt

s + It
s)ds

)∣∣Ft

]
= u(t,Xt,Θ

t
[t,T]),

where u(t,x,ω) = Et,x,ω [φ(XT)] = E[φ(XT)|Xt = x,Θt
[t,T] = ω] for all

(t,x,ω) ∈ T×R×C([t,T],R).
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(2) - The path derivatives of u

Let Λ = T×R×C0([t,T],R), and u : Λ −→ R. For ω ∈ C0([t,T]) we set ∥ω∥T = sups∈[t,T] |ωs|.
We define the path derivative of u in ω in the direction η ∈ C([t,T]) by:

⟨∂ω u(t,x,ω),η⟩= lim
ε−→0

u(t,x,ω + εη)−u(t,x,ω)

ε
,

which is a Gâteaux derivative, and we define in the same way the second path derivative〈
∂ 2

ω u(t,x,ω),(η ,ζ )
〉
.

Definition -

We say that u belongs to C2,2
+ (Λ) if u is C2 with respect to x and two times Fréchet

differentiable with respect to ω , and if there exists ku,qu > 0 such that

| ⟨∂ω u(t,x,ω),η⟩ |≲ (1+ |x|ku + equ∥ω∥T)∥η∥T
|
〈

∂
2
ω u(t,x,ω),(η ,ζ )

〉
|≲ (1+ |x|ku + equ∥ω∥T)∥η∥T ∥ζ∥T .
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(2) - The 2 main tools : functionnal Itô formula and PPDE

Let u ∈ C2,2
+ (Λ) and Ks(r) = K(r− s) for r ≥ s. We have the functional Itô formula from

[Viens and Zhang, 2019]:

u(t,Xt,Θ
t)−u(0,x,0) =

∫ t

0

(
∂tu(s,Xs,Θ

s)+b(Vs)∂xu(s,Xs,Θ
s)

+
1
2

〈
∂

2
ω u(s,Xs,Θ

s),(Ks,Ks)
〉)

ds+
∫ t

0
⟨∂ω u(s,Xs,Θ

s),Ks⟩dWs.

And we have the following path-dependent PDE for u:

Theorem (Thm 2.25 dans [Bonesini et al., 2023])

Under regularity hypothesis for b and φ (e.g, C2 and polynomial growth for φ , C2 and exponential
growth for b):

∂tu(t,x,ω)+b(ωt)∂xu(t,x,ω)+
1
2

〈
∂

2
ω u(t,x,ω),(Kt,Kt)

〉
= 0

with terminal condition u(T,x,ω) = φ(x),
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(2) - Regularity of u: moment bounds

▶ We introduce the flow process:

Xt,x,ω
T = x+

∫ T

t
b(V t,ω

s )ds

V t,ω
s = ωs +

∫ s

t
K(s− r)dWr, (t,x,ω) ∈ Λ and s ≥ t.

▶ By some Gaussian computations, we get the moment bounds:

Lemma

Assume that |b(x)| ≤ 1+ ekbx for some kb > 0. Then for all p ≥ 1,

sup
s∈[t,T]

E[exp(pV t,ω
s )]≲ ep∥ω∥T E[|Xt,x,ω

T |p]≲ |x|p + e2pkb∥ω∥T
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(2) - Regularity of u: representation of the derivatives
We will use the following formal notations:

⟨∂ω Xt,x,ω
T ,η⟩=

∫ T

t
b′(s,V t,ω

s )ηsds.

⟨∂ 2
ω Xt,x,ω

T ,(η ,ζ )⟩=
∫ T

t
b′′(s,V t,ω

s )ηsζsds.

Proposition

Under the same regularity conditions on φ and b as before, the function
u : (t,x,ω) 7→ E[φ(Xt,x,ω

T )] belongs to C2,2
+ (Λ) and for any η ,ζ ∈ C([t,T]) we have:

∂xu(t,x,ω) =E[φ ′(Xt,x,ω
T )],

∂
2
x u(t,x,ω) =E[φ ′′(Xt,x,ω

T )],

⟨∂ω u(t,x,ω),η⟩=E[φ ′(Xt,x,ω
T )

〈
∂ω Xt,x,ω

T ,η
〉
],

⟨∂ω ∂xu(t,x,ω),(η ,ζ )⟩=E[φ ′′(Xt,x,ω
T )

〈
∂ω Xt,x,ω

T ,η
〉

ζT ],〈
∂

2
ω u(t,x,ω),(η ,ζ )

〉
=E[φ ′′(Xt,x,ω

T )
〈
∂ω Xt,x,ω

T ,η
〉〈

∂ω Xt,x,ω
T ,ζ

〉
]

+Et,x,ω [φ
′(Xt,x,ω

T )
〈

∂
2
ω Xt,x,ω

T ,(η ,ζ )
〉
].
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(2) - The weak error expansion

Let Θ
t
s =

∫ t
0 K(s− r)dWr. We apply the functionnal Itô formula to u and (t,Xt,Θ

t
), we use the

PPDE satisfied by u, the bilinearity and symmetry of the map
〈
∂ 2

ω u(t,x,ω),( · , ·)
〉
:

E[φ(XT)]−E[φ(XT)] =E[u(T,XT ,Θ
T
)]−E[u(0,x,0)]

=E
∫ T

0
∂tu(t,Xt,Θ

t
)dt

+E
∫ T

0

{
b(V t

)∂xu(t,Xt,Θ
t
)+

1
2

〈
∂

2
ω u(t,Xt,Θ

t
),(Kt

,Kt
)
〉}

dt

=
1
2
E
∫ T

0

〈
∂

2
ω u(t,Xt,Θ

t
),(Kt −Kt,Kt

+Kt)
〉

dt.

Then due to the probabilistic representation of u we write the error as:

1
2

∫ T

0
E

[
φ
′′(Xt,Xt ,Θ

t

T )
(∫ T

t
b′(V t,Xt

s )(K −K)(s− t)ds
)(∫ T

t
b′(V t,Xt

s )(K +K)(s− t)ds
)]

dt

+
1
2

∫ T

0
E

[
φ
′(Xt,Xt ,Θ

t

T )
(∫ T

t
b′′(V t,Xt

s )(K2 −K2
)(s− t)ds

)]
dt.
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(2) - Main result

By pushing the expectations inside the Lebesgues integrals in the last formula, by the triangle
inequality, the growth control of the coefficients and the moment bounds on the stochastic
terms, we obtain the following result:

Théorème - Weak comparison theorem

|E[φ(XT)]−E[φ(XT)]|≲
∫ T

0

∫ t

0
|(K −K)(s)|ds dt+

∫ T

0

∫ t

0
|(K2 −K2

)(s)|ds dt. (1)

▶ Remark: With additional regularity on the coefficients, a second use of the functional Itô
formula allows to expand the second term in the RHS of (1) into:∫ T

0

∣∣∣∫ t

0
K2(s)ds−

∫ t

0
K2

(s)ds
∣∣∣dt+

∫ T

0

∫ t

0

∣∣∣(K2(s)−K2
(s))

∫ s

0
(K2(u)−K2

(u))du
∣∣∣ds dt.

It is still an open question whereas we can get rid of the pink term when K is singular.
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3. Applications



(3) - Some applications: modelling point of view

The comparison theorem may help to determine which sequences of kernels are the most
suitable approximations of the fractionnal one in our modelling problem. In particular:

▶ Let K(r) = rH− 1
2 and K(r) = (r+ τ)H− 1

2 . Then |E[φ(XT)]−E[φ(XT)]| ≲
H→0

T
2H +o( τ

2H ).

▶ Let K(r) = rH− 1
2 and K(r) = rH− 1

2 1{r≥τ}+
τ

H− 1
2√

2H
1{r<τ}. Then

|E[φ(XT)]−E[φ(XT)]| ≲
H→0

τ
T

2H +o( τ

2H ) but only if we get rid of the pink term.

This suggests that there *might* be better approximations of the fractionnal than
K(r) = (r+ τ)H− 1

2 when H is small, but this is still an open question for now.
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(3) - A numerical application

▶ Goal: for V a Volterra process with non-trivial kernel, approximate the path of V to compute
the statistics of the integrated model by Monte-Carlo method:

E

[
φ

(∫ T

0
b(Vs)ds

)]
≃ 1

N

N

∑
i=1

φ

(n−1

∑
j=1

(tj+1 − tj)b(V
(i)
tj )
)
.

▶ This can be achieved by Markovian approximation of V when the kernel K is completely
monotone, i.e if there exists a positive, non decreasing function λ : R+ 7→ R+ such that:

K(r) =
∫ +∞

0
e−(t−s)x

λ (x)dx.

▶ Example: the kernels K(r) = rH− 1
2 and K(r) = (r+ τ)H− 1

2 are completely monotones,

with associated λ respectively equals to λ (x) = x−H− 1
2 and λ (x) = e−τxx−H− 1

2 .
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(3) - The Markovian approximation from [Carmona et al., 2000]

Applying the stochastic Fubini theorem and discretising the Laplace transform of K,

∫ t

0
K(t− s)dWs =

∫ t

0

(∫ +∞

0
e−(t−s)x

λ (x)dx
)

dWs

=
∫ +∞

0
λ (x)dx

(∫ t

0
e−(t−s)xdWs

)
≃

m

∑
i=1

wiY
xi
t ,

where

▶ (wi,xi){1≤i≤m} is an appropriate Gauss quadrature of order m for
∫+∞

0 f (x)λ (x)dx,

▶ (Yxi
t )t∈[0,T] is a (Markov) Ornstein-Uhlenbeck process starting from zero :

dYxi
t =− xiY

xi
t dt+dWt

Yxi
0 =0.
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(3) - Convergence of the Markovian approximation

▶ Observe that we can write

m

∑
i=1

wiY
xi
t =

∫ t

0
Km(t− s)dWs with Km(r) =

m

∑
i=1

wie−rxi ,

▶ If (wi,xi){1≤i≤m} comes from a Gaussian quadrature method, it follows from Corollary D.2
in [Bayer and Breneis, 2023] that for every m and r, we have

Km(r)≤ K(r),

hence |K2(r)−K2
m(r)|= K2(r)−K2

m(r).
▶ Applying the comparison theorem we derive that

|E[φ(XT)]−E[φ(X(m)
T )]| ≤

∫ T

0

∫ t

0
(K2(s)−K2

m(s))ds dt

where X(m)
T =

∫ T
0 b
(∫ s

0 Km(s− r)dWr
)
ds.

▶ For example, if K(r) = rH− 1
2 =

∫+∞

0 x−
1
2 −He−rxdx, the weak error from the Markovian

approximation is mainly controlled by the leftover term∫ T

t0

∫ T

t

(∫ +∞

xm

x−
1
2 −He−(s−t)xdx

)2
dsdt ≲

x−2H
m
2H

.
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Conclusion and perspectives

▶ Using the functionnal Itô formula from [Viens and Zhang, 2019] and the PPDEs from
[Bonesini et al., 2023], we obtain a comparison theorem between (Lebesgue) integrated
Volterra processes in terms of deterministic integral differences of their kernels.

▶ The error obtained might be improved if we can push the absolute value outside one of the
integrals, which would be crucial for the applications we have in mind. This is work in
progress.

▶ One may also think to extend the result to stochastic integrals of Volterra processes, with
respect to a possibly correlated other Brownian motion.
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Thanks for your attention!
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