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Introduction : additive jump models and applications
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▶ We are interested in the approximation and the simulation of the solution process
(Xt, t ∈ [0,T]) of the SDE

Xt =
∫ t

0
b(Xs)ds+

∫ t

0

∫
∞

−∞

c(s,Xs− ,z)Ñ(ds,dz),

where Ñ is a compensated random Poisson measure, with time-inhomogeneous
compensator measure νs(dz)ds, and b and c are deterministic Lipschitz-in-space coefficients.
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c(s,Xs− ,z)Ñ(ds,dz),

where Ñ is a compensated random Poisson measure, with time-inhomogeneous
compensator measure νs(dz)ds, and b and c are deterministic Lipschitz-in-space
coefficients.

▶ This class of SDE is useful to obtain non-gaussian stochastic models that may have several
time regimes. Such a model can be for example used

▶ to describe the population dynamics of parasitoid insects (see [BCP+23])
▶ to capture option prices over a range of different maturities and strikes (see [CT04])
▶ to represent the angle dynamics of non-spherical particles in a turbulent flow (see [CBB22]).
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where Ñ is a compensated random Poisson measure, with time-inhomogeneous
compensator measure νs(dz)ds, and b and c are deterministic Lipschitz-in-space
coefficients.

▶ This class of SDE is useful to obtain non-gaussian stochastic models that may have several
time regimes. Such a model can be for example used

▶ to describe the population dynamics of parasitoid insects (see [BCP+23])
▶ to capture option prices over a range of different maturities and strikes (see [CT04])
▶ to represent the angle dynamics of non-spherical particles in a turbulent flow (see [CBB22]).

▶ Our goal is to construct an algorithm (Xn) to simulate the process (Xt) and obtain rates of
convergence for the probabilistic strong error (trajectorial) between X and X.
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▶ Numerical algorithms to approximate SDEs driven by a Brownian motion W are well known in
the literature:

Xt =
∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs.

▶ The simplest method is given by the Euler-Maruyama scheme:

Xti+1 = Xti +b(Xti )(ti+1 − ti)+σ(Xti )(Wti+1 −Wti ),

where (ti = iT
n , i = 0, . . . ,n) are the discretization steps, and n ∈ N.

▶ This scheme is straightforward to implement because one knows how to simulate the law of
any increment Ws −Wu of the Brownian motion easily.
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▶ A first generalisation consists in replacing the driving Brownian motion by a Lévy process L,
i.e a process L having independent and stationary increments:

Xt =
∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs− )dLs.

▶ In this case, one may still define the Euler-Maruyama scheme:

Xti+1 = Xti +b(Xti )(ti+1 − ti)+σ(Xti )(Lti+1 −Lti ),

where (ti = iT
n , i = 0, . . . ,n) are the discretization steps, and n ∈ N.

▶ However, simulating the increments Ls −Lu of the Lévy process is not something easy in
general. It is possible for some particular example, such as the so called α-stable process
Lα .
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▶ However, simulating the increments Ls −Lu of the Lévy process is not something easy in
general. It is possible for some particular example, such as the so called α-stable process
Lα .

▶ Thanks to the Lévy-Itô décomposition, if L has at least a moment of order 2, it can be
written

Lt =
∫ t

0

∫
∞

−∞

z(N(ds,dz)−ν(dz)ds) =
∫ t

0

∫
∞

−∞

zÑ(ds,dz),

where ν is a deterministic measure called the Lévy measure of L.
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▶ A second generalisation consists in replacing the driving Brownian motion by an additive
process A, i.e a process A having independent increments:

Xt =
∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs− )dAs.

▶ In this case, one may still define the Euler-Maruyama scheme:

Xti+1 = Xti +b(Xti )(ti+1 − ti)+σ(Xti )(Ati+1 −Ati ),

where (ti = iT
n , i = 0, . . . ,n) are the discretization steps, and n ∈ N.

▶ However, simulating the increments As −Au of the additive process is not something easy in
general.

▶ Thanks to the Lévy-Itô décomposition, if A has at least a moment of order 2, it can be
written

At =
∫ t

0

∫
∞

−∞

z(N(ds,dz)−νs(dz)ds) =
∫ t

0

∫
∞

−∞

zÑ(ds,dz),

where (νs)s∈[0,T] is a collection of Lévy measures.
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▶ Finally, based on the Lévy-Itô decomposition, one may think of an "increments-free"
generalisation, leading to the SDE:

Xt =
∫ t

0
b(Xs)ds+

∫ t

0

∫
∞

−∞

c(Xs− ,z)Ñ(ds,dz).

▶ However, in this case we are not able to give a sense to the Euler-Maruyama scheme:

Xti+1 = Xti +b(Xti )(ti+1 − ti)+ ???

where (ti = iT
n , i = 0, . . . ,n) are the discretization steps, and n ∈ N.

▶ Indeed, we can’t define a discretisation of X that relies on the increments of an underlying
stochastic process anymore, except in the case where c can be written c(x,z) = σ(x)f (z).



2. Approximation of a random Poisson integral

3/ 11

▶ Let F : [0,T]×R→R be a measurable function such that
∫ T

0
∫

∞

−∞
|F(s,z)|2νs(dz)ds < ∞. We

want to simulate the stochastic integral:

I(F) =
∫ T

0

∫ +∞

−∞

F(s,z)Ñ(ds,dz)
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∫
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want to simulate the stochastic integral:

I(F) =
∫ T

0

∫ +∞
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F(s,z)Ñ(ds,dz)

▶ Taking the threshold ε > 0, I(F) can be separated into it’s large jumps part Iε
l (F) and small

jumps part Iε
l (F):

Iε
l (F) =

∫ T

0

∫
R\B(ε)

F(s,z)Ñ(ds,dz), Iε
l (F) =

∫ T

0

∫
B(ε)

F(s,z)Ñ(ds,dz),

I(F) = Iε
l (F)+ Iε

l (F).
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The large jumps : a direct simulation method

▶ The large jump integral can be represented by the difference of a finite random sum and a
deterministic integral:

∫ T

0

∫
R\B(ε)

F(s,z)N(ds,dz) =
Nε (T)

∑
j=1

F(Tε (j),Zε (j))−
∫ t

0

∫
R\B(ε)

F(s,z)νs(dz)ds. (1)
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▶ The random variables Zε (j) for j ≤ Nε (T) have conditional distribution given the jump times
given by:

∀B ∈ B(R) P(Zε (j) ∈ B | Tε (j) = t) =
νt(B∩R\B(ε))

νt(R\B(ε))
.

▶ Note that if the time-dependence of νt is multiplicative, i.e if one has νt(dz) = φ(t)ν(dz),
then the latter distribution is homogeneous in time. In this case the jump sizes Zε (j) are i.i.d.



2. Approximation of a random Poisson integral

3/ 11

The large jumps : a direct simulation method

▶ The large jump integral can be represented by the difference of a finite random sum and a
deterministic integral:

∫ T

0

∫
R\B(ε)

F(s,z)N(ds,dz) =
Nε (T)

∑
j=1

F(Tε (j),Zε (j))−
∫ t

0

∫
R\B(ε)

F(s,z)νs(dz)ds. (1)

▶ Hence, to perform a simulation of Iε
l (F), one needs:

1. To generate the Poisson process Nε : this can be done with thinning method if the function
λ is bounded, or by (eventually numerical) inversion of t 7→ λ (t);

2. To generate the jump sizes random variables Zε (j) for any j ≤ Nε (T): for usual
distributions, this can be done by inversion or acceptance-rejection methods;

3. To compute the deterministic integral
∫ t

0
∫
R\B(ε) F(s,z)νs(dz)ds: it can be done analytically

or numerically, depending on the difficulty.
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The large jumps : a simple (and useful !) example

▶ We take the example of a 1-truncated α-stable process, i.e F(s,z) = z and

νt(dz) = f (t)|z|−(1+α)1{|z|≤1},

where α ∈ (0,2] and f ∈ L∞([0,T]).

1. The Poisson process Nε has intensity function λ ε (t)≤ 2∥f∥∞
ε−α−1

α
, allowing to use a

thinning method.

2. The jump sizes Zε (j) are i.i.d and Zε (1) has explicit quantile function given by

∀y ∈]0,1], Qε (y) =

{
−{2y(ε−α −1)+1}− 1

α , if y ∈ (0, 1
2 ],

{(1−2y)(ε−α −1)+ ε−α}− 1
α , if y ∈ ( 1

2 ,1].

3. The deterministic integral
∫ t

0
∫
R\B(ε) F(s,z)νs(dz)ds is straightforward to compute:

∫ t

0

∫
R\B(ε)

zνs(dz)ds =
(∫ t

0
f (s)ds

)(∫
ε≤|z|≤1

z|z|−1−α dz
)
= 0.
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The small jumps : an extension of the Asmussen-Rosinski method

▶ Generally, exact simulation of the small jumps integral Iε
l (F) is not possible, but we may

approximate it using the following idea:
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√
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1 Obtained by direct simulation, which is possible in this very specific case thanks to the acceptance-rejection algorithm developped by
Dassios, Lim and Qu in [DLQ19]
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The small jumps : an extension of the Asmussen-Rosinski method

▶ Generally, exact simulation of the small jumps integral Iε
l (F) is not possible, but we may

approximate it using the following idea.

▶ We substitute the stochastic integral Iε
l (F) with a Gaussian random variable having an

equivalent variance:

Law(Iε
l (F))≃

(∫ T

0

∫
B(ε)

|F(s,z)|2νs(dz)ds
) 1

2
N(0,1),

where N(0,1) designates the standard normal distribution.
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N(0,1),

where N(0,1) designates the standard normal distribution.

▶ To quantify the error made in this approximation, we will use the Wasserstein distance of
order p defined by

Wp(L1,L2) = inf
(X1,X2)∈π(L1 ,L2)

E[|X1 −X2|p]
1
p ,

where (X1,X2) ∈ π(L1,L2), means that the random variables X1,X2 verify Law(Xi) =Li.
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The small jumps : an extension of the Asmussen-Rosinski method

Proposition 1

Let p ≥ 1. Assume that F(t, ·) is non identically zero on B(1) for any t ∈ [0,T] and

∫ T

0

∫
B(1)

|F(s,z)|p+2
νs(dz)ds +

∫ T

0

(∫
B(1)

|F(s,z)|2νs(dz)
) p

2 +1

ds < ∞.

Then there exists a constant A(p), only depending on p, such that for every ε ∈ (0,1), the
following inequality holds for any t ∈ [0,T]:

Wp

(
Law

(∫ t

0

∫
B(ε)

F(s,z)Ñ(ds,dz)
)
, N

(
0,
∫ t

0

∫
B(ε)

|F(s,z)|2νs(dz)ds
))

≤ A(p)

( ∫ t
0
∫

B(ε) |F(s,z)|p+2νs(dz)ds∫ t
0
∫

B(ε) |F(s,z)|2νs(dz)ds

) 1
p

.

(1)

▶ The term in the right hand-side goes to zero when ε goes to zero on good conditions on F (a
sufficient condition is that lim|z|→0 sups∈[0,T] |F(s,z)|= 0).
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Idea of the proof

▶ The proof relies on a Wp-distance quantification of the convergence of the CLT (Rio’s
conjecture, proved by Bobkov in 2018 in [Bob18]):

Theorem – (S.G Bobkov, 2018)

For p ≥ 1, there exists cp > 0 depending only on p such that if X1, . . . ,Xm are independent random
variables with ∑

m
j=1 Var(Xj) = 1, then

Wp

(
Law

(
m

∑
j=1

Xj

)
, N(0,1)

)
≤ cp

(
m

∑
j=1

E[|Xj|p+2]

) 1
p

.

▶ We apply this result to the independent random variables

Xj =
∫

τj

τj−1

∫
B(ε)

F(s,z)Ñ(ds,dz), j ∈ {1, . . . ,m},

where τj =
jt
m , and estimate the p+2-moment of Xj using Kunita inequality for random

Poisson integrals, that we will recall later in this talk.
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▶ This discussion allows us to define what we call the ε-Euler Maruyama scheme to
approximate the process Xt in introduction.

▶ We fix a threshold ε ∈ (0,1). For n ∈ N∗, we define 0 = t0 < · · ·< tn = T , a discretisation of
the interval [0,T] with constant steps, i.e ti = i T

n . Let (ξi)i∈{1,...,n} a sequence of i.i.d

standard Gaussian random variables. We define Xε by Xε

0 = 0 and

Xε

ti =Xε

ti−1
+b(ti−1,X

ε

ti−1
)

T
n
−
∫ ti

ti−1

∫
R\B(ε)

c(s,Xε

ti−1
,z)νs(dz)ds

+

(∫ ti

ti−1

∫
B(ε)

c2(s,Xε

ti−1
,z)νs(dz)ds

) 1
2

ξi +
Nε (ti)

∑
j=Nε (ti−1)+1

c(Tε (j),Xε

ti−1
,Zε (j)).
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▶ We fix a threshold ε ∈ (0,1). For n ∈ N∗, we define 0 = t0 < · · ·< tn = T , a discretisation of
the interval [0,T] with constant steps, i.e ti = i T

n . Let (ξi)i∈{1,...,n} a sequence of i.i.d

standard Gaussian random variables. We define Xε by Xε

0 = 0 and

Xε

ti =Xε

ti−1
+b(ti−1,X

ε

ti−1
)

T
n
−
∫ ti

ti−1

∫
R\B(ε)

c(s,Xε

ti−1
,z)νs(dz)ds

+

(∫ ti

ti−1

∫
B(ε)

c2(s,Xε

ti−1
,z)νs(dz)ds

) 1
2

ξi +
Nε (ti)

∑
j=Nε (ti−1)+1

c(Tε (j),Xε

ti−1
,Zε (j)).

▶ We will know be giving a convergence result for Xε in the Lp-norm. Note that this
convergence will depend on two parameters, which are the number n of discretisation steps
and the small jumps/big jumps threshold ε .
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We fix p ≥ 2 and T > 0. We consider a filtered probability space (Ω,F,P,(Ft)t∈R+ ) equipped
with a standard Brownian motion B and a random Poisson measure N.

▶ (H1) - Regularity. We assume that there exists constants La, Lb and a measurable function
Lc : [0,T]×R→ R+

|b(x)−b(y)| ≤ Lb (|x− y|) , x,y ∈ R,
|c(t,x,z)− c(t,y,z)| ≤ Lc(t,z) |x− y|, x,y ∈ R, t ∈ [0,T],z ∈ R.
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∞

−∞

|Lc(t,z)∨|c(t,0,z)||2 νt(dz)
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+
∫
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−∞
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belongs to L1+ζ ([0,T]) for some ζ ∈ (0,1].
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ψp(t) =
(∫

∞

−∞

|Lc(t,z)∨|c(t,0,z)||2 νt(dz)
)p/2

+
∫

∞

−∞

|Lc(t,z)∨|c(t,0,z)||p νt(dz)

belongs to L1+ζ ([0,T]) for some ζ ∈ (0,1].

▶ (H3) - A.R. Approximation. We assume that there exists ε∗ ∈ (0,1] such that
▶ (Moments) for all x ∈ R and t ∈ [0,T], c(t,x, ·) is not identically zero on B(ε∗) and

∫ T

0

∫
B(ε∗)

|c(t,x,z)|p+2
νt(dz)dt +

∫ T

0

(∫
B(ε∗)

|c(t,x,z)|2νt(dz)
) p

2 +1

dt < ∞.

▶ (Coupling) for all x ∈ R and t ∈ [0,T], the image measure of 1{z∈B(ε∗)}νt(dz) by z 7→ c(t,x,z) has a
density with respect to the Lebesgue measure on R and satisfies

∫
B(ε∗) νt(dz) = ∞.
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Théorème 1 – (Bossy, Maurer 2023)
We assume that (H1), (H2) and (H3) hold.

(i.) For any ε ∈ (0,ε∗], there exists a sequence (X̂ε
ti )i∈{0,...,n} of random variables on (Ω,F), such

that for any i ∈ {0, . . . ,n}, Xε

ti is Fti - measurable, and verifies Law(X̂ε
ti ) = Law(Xε

ti ). Moreover,
there exists m(p,T)> 0 such that

sup
ε∈[0,ε∗)

E
[

sup
i∈{0,...,n}

|X̂ε
ti |

p]≤ m(p,T).
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(i.) For any ε ∈ (0,ε∗], there exists a sequence (X̂ε
ti )i∈{0,...,n} of random variables on (Ω,F), such

that for any i ∈ {0, . . . ,n}, Xε

ti is Fti - measurable, and verifies Law(X̂ε
ti ) = Law(Xε

ti ). Moreover,
there exists m(p,T)> 0 such that

sup
ε∈[0,ε∗)

E
[

sup
i∈{0,...,n}

|X̂ε
ti |

p]≤ m(p,T).

(ii.) The following inequality stands true for any ε ∈ (0,ε∗]:∥∥∥ sup
i∈{0,...,n}

∣∣Xti − X̂ε
ti

∣∣∥∥∥
Lp(Ω)

≼ n−
{

2ζ

p(1+ζ )

}
+δ

n
p (ε),
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E
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sup
i∈{0,...,n}

|X̂ε
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p]≤ m(p,T).

(ii.) The following inequality stands true for any ε ∈ (0,ε∗]:∥∥∥ sup
i∈{0,...,n}

∣∣Xti − X̂ε
ti

∣∣∥∥∥
Lp(Ω)

≼ n−
{

2ζ

p(1+ζ )

}
+δ

n
p (ε),

where δ
n
p (ε) =

 n

∑
k=1

E

( ∫ tk
tk−1

∫
B(ε) |c(s, X̂ε

tk−1
,z)|p+2νs(dz)ds∫ tk

tk−1

∫
B(ε) |c(s, X̂ε

tk−1
,z)|2νs(dz)ds

) 1
p


2

1
2

satisfies limε→0 δ n
p (ε) = 0 when the following sufficient condition holds:

lim
|z|→0

sup
t∈[0,T]

|Lc(t,z)|= 0.
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Corollaire
We assume in addition to (H1), (H2) and (H3) that there exists a constant CT satisfying

∀(s,x,z) ∈ [0,T]×R×B(ε∗), |c(t,x,z)| ≤ CT |z|(1+ |x|). (1)

▶ Then, for any ε ∈ (0,ε∗], the Lp-strong error of the ((Ω,F)-representation of the) ε-EM scheme
X̂ε satisfies: ∥∥∥ sup

i∈{0,...,n}

∣∣Xti − X̂ε
ti

∣∣∥∥∥
Lp(Ω)

≼ n−
{

2ζ

p(1+ζ )

}
+ ε

√
n.
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X̂ε satisfies: ∥∥∥ sup

i∈{0,...,n}

∣∣Xti − X̂ε
ti

∣∣∥∥∥
Lp(Ω)

≼ n−
{

2ζ

p(1+ζ )

}
+ ε

√
n.

▶ Moreover, suppose we have ψp ∈ L2([0,T]) (i.e. ζ = 1). With ε taken such that

ε ≤ n−
(

1
2 +

1
p

)
∧ ε

∗,

we obtain the following convergence rate for the Lp-strong error:∥∥∥ sup
i∈{0,...,n}

∣∣∣Xti − X̂ε
ti

∣∣∣∥∥∥
Lp(Ω)

≼ n−
1
p .



7. Ideas of the proof

8/ 11

The continuous Euler-Peano scheme as a pivot term

▶ We use as a pivot term the SDE with frozen coefficients (or Euler-Peano scheme) X̃
defined by

X̃t =
∫ t

0
b(X̃η(s))ds+

∫ t

0

∫ +∞

−∞

c(s, X̃η(s−),z)Ñ(ds,dz),

where η(t) = ti if t ∈ [ti, ti+1).
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0

∫ +∞

−∞

c(s, X̃η(s−),z)Ñ(ds,dz),

where η(t) = ti if t ∈ [ti, ti+1).

▶ We first prove a rate of convergence for X̃ and then compare X̃ with our scheme:

Proposition 2 - Lp-convergence of the Euler-Peano scheme

Assume (H1) and (H2). Then for all n ∈ N∗,∥∥∥ sup
t∈[0,T]

|Xt − X̃t|
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defined by

X̃t =
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0
b(X̃η(s))ds+

∫ t

0

∫ +∞

−∞

c(s, X̃η(s−),z)Ñ(ds,dz),

where η(t) = ti if t ∈ [ti, ti+1).

▶ We first prove a rate of convergence for X̃ and then compare X̃ with our scheme:

Proposition 2 - Lp-convergence of the Euler-Peano scheme

Assume (H1) and (H2). Then for all n ∈ N∗,∥∥∥ sup
t∈[0,T]

|Xt − X̃t|
∥∥∥

Lp(Ω)
≼ n−

{
2ζ

p(1+ζ )

}

▶ The proof of Proposition 2 relies on a Gronwall argument as it is usually the case for a
standard strong convergence proof, but has some specificity due to the non-continuous
paths of the process and the time-inhomogeneity of the jumps.
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Kunita inequality

▶ To prove Proposition 2, we need a tool to estimate the Lp-moments of a stochastic Poisson
integral. Since these types of integrals are martingales, one may want to use the
Burkhölder-Davis-Gundy (BDG) inequality :

E

[
sup

0≤s≤t
|Ms|p

]
≤ CBDG

p E[[M,M]
p/2
t ],
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▶ However, in the case of discontinuous process, the quadratic variation [M,M] is not equal
to the predictable quadratic variation ⟨M,M⟩, and we only have tools to estimate the latter.
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▶ To prove Proposition 2, we need a tool to estimate the Lp-moments of a stochastic Poisson
integral. Since these types of integrals are martingales, one may want to use the
Burkhölder-Davis-Gundy (BDG) inequality :

E

[
sup

0≤s≤t
|Ms|p

]
≤ CBDG

p E[[M,M]
p/2
t ],

▶ However, in the case of discontinuous process, the quadratic variation [M,M] is not equal
to the predictable quadratic variation ⟨M,M⟩, and we only have tools to estimate the latter.

▶ For this reason, we use another inequality that is more specific to Poisson integrals:

Lemma (Kunita inequality)

Let F be a predictable stochastic process and It =
∫ t

0
∫

∞

−∞
F(s,z)Ñ(ds,dz). Then for all p ≥ 2 there

exists a constant C depending only on p and T such that

E

[
sup

s∈[0,t]
|Is|p

]
≤ C

∫ t

0
E

[(∫
∞

−∞

|F(s,z)|2νs(dz)
)p/2

]
ds+C

∫ t

0
E
[∫

∞

−∞

|F(s,z)|pνs(dz)
]

ds
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Proof of proposition 2 - The Brownian case

▶ Let’s first recall the scheme of the proof in the standard (Brownian noise) case.

▶ Setting E(t) = sups∈[0,t] ∥Xs − X̃s∥Lp(Ω), we may use Minkoswki integral inequality and BDG
inequality to obtain the upper-bound

E(t)≼
∫ t

0
∥b(Xs)−b(X̃η(s))∥Lp(Ω)ds+

(∫ t

0
∥σ(Xs)−σ(X̃η(s))∥2

Lp(Ω)ds
) 1

2
.

▶ Then we use the Lipschitz property of b and σ to get

E(t)≼
∫ t

0
∥Xs − X̃η(s)∥Lp(Ω)ds+

(∫ t

0
∥Xs − X̃η(s)∥2

Lp(Ω)ds
) 1

2
.

▶ We may use the pivot Xη(s) to separate the two terms of the right-hand side into a local error
term and a Gronwall term, as follows:

E(t)≼
∫ t

0
(∥Xs −Xη(s)∥Lp(Ω)+ E(s))ds+

(∫ t

0
(∥Xs −Xη(s)∥2

Lp(Ω)+ E(s)2)ds
) 1

2
.

▶ Finally we may bound the local error terms using the same inequalities and s−η(s)≤ 1
n ,

allowing to apply a Gronwall-type lemma. This gives a rate of convergence of n−
1
2 , where the

power 1/2 comes from the BDG inequality.
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Proof of proposition 2 - The Poisson case

▶ We now move to the (sketch of the) proof in our case.

▶ Setting E(t) = sups∈[0,t] ∥Xs − X̃s∥Lp(Ω), we may use Minkoswki integral inequality and
Kunita inequality to obtain the upper-bound

E(t)≼
∫ t

0
∥b(Xs)−b(X̃η(s))∥Lp(Ω)ds+

(∫ t

0
E

[(∫
∞

−∞

(c(s,Xs,z)− c(s, X̃η(s),z))
2
νs(dz)

) p
2
]

ds

) 1
p

+

(∫ t

0

∫
∞

−∞

E
[
|c(s,Xs,z)− c(s, X̃η(s),z)|p

]
νs(dz)ds

) 1
p
.

▶ Then we use the Lipschitz property of b and c to get

E(t)≼
∫ t

0
∥Xs − X̃η(s)∥Lp(Ω)ds+

(∫ t

0
ψp(s)

∥∥∥Xs − X̃η(s)

∥∥∥p

Lp(Ω)
ds
) 1

p
,

where we recall that:

ψp(t) =
(∫

∞

−∞

|Lc(t,z)∨|c(t,0,z)||2 νt(dz)
)p/2

+
∫

∞

−∞

|Lc(t,z)∨|c(t,0,z)||p νt(dz)
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Sketch of the proof of Theorem 1. To prove Theorem 1, we need to do three things.

1. Construct a version X̂ε of the scheme that lives on the same probability space as X and
satisfy an optimal coupling property with respect to the Wp-distance: we will detail this
construction on the next slide.

2. Find a uniform bound in ε for X̂ε : this is done by a standard Gronwall argument using some
discrete martingale properties of the construction of X̂ε and the discrete BDG inequality.

3. Derive an upper-bound for the Lp-norm of X̃− X̂ε : this is also done by a Gronwall argument
using the optimal coupling property and Proposition 1 to get an upper bound for the small
jump approximation part, leading to the contribution δ n

p (ε) in the result of Theorem 1.
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More details on the construction of X̂ε

▶ For fixed x, we denote Yi(x) =
∫ ti

ti−1

∫
B(ε) c(s,x,z)Ñ(ds,dz). Our aim consists in constructing

a map Ti : R×R→ R that optimally transports (for the Wp-distance) Law(Yi(x)) to the
centred normal distribution Ni(x) of variance

∫ ti
ti−1

∫
B(ε) c(s,x,z)2νs(dz)ds. In addition, this

map must be measurable with respect to the parameter x.
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ti−1

∫
B(ε) c(s,x,z)Ñ(ds,dz). Our aim consists in constructing

a map Ti : R×R→ R that optimally transports (for the Wp-distance) Law(Yi(x)) to the
centred normal distribution Ni(x) of variance

∫ ti
ti−1

∫
B(ε) c(s,x,z)2νs(dz)ds. In addition, this

map must be measurable with respect to the parameter x.

▶ We set X̂ε
t0 = X0. For i ∈ {1, . . . ,n}, let Qi = Law(Xε

ti−1
). Applying Theorem 1.1 from

Fontbona-Guérin-Meleard (see [FGM10]), there exists an application Ti : R×R→ R which
is (B(R)⊗B(R),B(R))-measurable such that for Qi-almost every x ∈ R, one has

E[|Yi(x)−Ti(x,Yi(x))|p] = Wp(Law(Yi(x)),Ni(x))p.

▶ Then, given X̂ε
ti−1

, we can set

X̂ε
ti =X̂ε

ti−1
+b(X̂ε

ti−1
)(ti − ti−1)+Ti

(
X̂ε

ti−1
,Yi(X̂ε

ti−1
)
)
+
∫ ti

ti−1

∫
R\B(ε)

c(s, X̂ε
ti−1

,z)Ñ(ds,dz).
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∫
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∫ ti
ti−1

∫
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▶ We set X̂ε
t0 = X0. For i ∈ {1, . . . ,n}, let Qi = Law(Xε
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). Applying Theorem 1.1 from

Fontbona-Guérin-Meleard (see [FGM10]), there exists an application Ti : R×R→ R which
is (B(R)⊗B(R),B(R))-measurable such that for Qi-almost every x ∈ R, one has

E[|Yi(x)−Ti(x,Yi(x))|p] = Wp(Law(Yi(x)),Ni(x))p.

▶ Then, given X̂ε
ti−1

, we can set

X̂ε
ti =X̂ε

ti−1
+b(X̂ε

ti−1
)(ti − ti−1)+Ti

(
X̂ε

ti−1
,Yi(X̂ε

ti−1
)
)
+
∫ ti

ti−1

∫
R\B(ε)

c(s, X̂ε
ti−1

,z)Ñ(ds,dz).

▶ By construction, Xε and X̂ε have the same law, and one can check that (X̂ε
ti ,0 ≤ i ≤ n) is an

adapted sequence to the filtration (Fti ,0 ≤ i ≤ n), and that (Ti(X̂ε
ti−1

,Yi(X̂ε
ti−1

)),1 ≤ i ≤ n)
is a sequence of (discrete) martingale increments relatively to this filtration.
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There are two limitations to a numerical evaluation of the strong convergence rate in our case that
we want to point out:

1. The lack of exact trajectory solution.

Processing the computation of the strong norm of the error always poses the problem of
simulating a reference solution trajectory, that is not available in the jump case. We chosed to
compute an approximate reference solution, by pushing the approximation parameters to a
limit value which serves as a bound for the experiments with coarse parameters. This forces
us to restrict the numerical test in the increment case c(s,x,z) = σ(x)f (s,z).



8. Numerical simulations

9/ 11

There are two limitations to a numerical evaluation of the strong convergence rate in our case that
we want to point out:

1. The lack of exact trajectory solution.

Processing the computation of the strong norm of the error always poses the problem of
simulating a reference solution trajectory, that is not available in the jump case. We chosed to
compute an approximate reference solution, by pushing the approximation parameters to a
limit value which serves as a bound for the experiments with coarse parameters. This forces
us to restrict the numerical test in the increment case c(s,x,z) = σ(x)f (s,z).

2. The sampling of the two-parameters increments.

For the ε-EM algorithm, we have two control-parameters, the time step 1/n and the small
jumps cut ε . Once the choice of ε is fixed, the increments of the process∫ ·

0
∫
R/B(ε) zÑ(ds,dz) can then be simulated on a very fine time grid, and next aggregated

together to produce increments on a coarser time grid.
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Rate of convergence in terms of the norm exponent p

We investigate the behaviour of the Lp-strong error with respect to the variations of p ≥ 2. For that
purpose, we consider the following example:

Xt =
∫ t

0
cos(Xs)ds+

∫ t

0

∫
∞

−∞

sin(Xs− ) z Ñ(ds,dz), νs(dz)ds = 1{|z|≤10}
dz

|z|3/2 ds.

Figure 1: Behaviour of
∥∥∥supi∈{0,...,n}

∣∣Xεmin ,n
ti

−Xεmin ,nmax
ti

∣∣∥∥∥
Lp(Ω)

with n, for various Lp-norms (lines with makers),

and the corresponding theoretical (dash lines) rates.
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Rate of convergence with low time-integrability

When ψp is not more than L1+ζ with ζ ∈ (0,1), we may only recover the rate n−
2ζ

p(1+ζ ) . We
investigated if this loss could be observed numerically with the following equation:

Xt =
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∫
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10−5 10−4 10−3

Step size T/n

10−1

100

S
tr

o
n

g
er

ro
r

Tn−1/2

Tn−1/4

Tn−1/10

β = 0.00

β = −0.75

β = −0.90

Figure 1: Behaviour of
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with n, for various Lp-norms (lines with makers),

and the corresponding theoretical (dash lines) rates.
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▶ We developed a numerical scheme to approximate a class of time-inhomogeneous jump
SDEs based on the Asmussen-Rosinski technique, and derived a rate of convergence for
the Lp-strong error by optimal transport technique, using bounds for the CLT convergence in
Wp-distance.

▶ In the setting we are and assuming more regularity on the coefficients, we believe that it is
possible to also derive a weak error rate for this scheme. This work is still in progress, but
we have good confidence to obtain the following result:

Theorem (Work in progress)
Assume (H1) and "good enough" space and time regularity of the coefficients. Assume that the νt
are dominated by a Lévy measure µ . Let β = inf{α > 0,

∫
|z|<1 |z|α µ(dz)< ∞} the

Blumenthal-Getoor index of the indivisible distribution characterised by µ .
Let ϕ ∈ C4(R) be such that for every k ∈ {1, . . . ,4},∣∣∣ ∂ kϕ

∂xk (x)
∣∣∣≤ C(1+ |x|q) (2)

for some q ≤ p
2 . We have the following weak error upper-bound:

|E[ϕ(Xε
T )]− E[ϕ(Xε

T )]|≼ n−1 + ε
3−β+

.
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