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Introduction : additive jump models and applications

> We are interested in the approximation and the simulation of the solution process
(X;,t € [0,T]) of the SDE

i t oo _
X,=/ b(Xs)ds-i—/ / c(s, Xy~ ,2)N(ds,dz),
0 0 J—

where N is a compensated random Poisson measure, with time-inhomogeneous

compensator measure V,(dz)ds, and b and ¢ are deterministic Lipschitz-in-space coefficients.
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Introduction : additive jump models and applications

> We are interested in the approximation and the simulation of the solution process
(X;,t € [0,T]) of the SDE

t t oo _
Xo= [xds+ [ [ cs.X, N s da),
0 0 J—c

where N is a compensated random Poisson measure, with time-inhomogeneous
compensator measure Vs(dz)ds, and b and ¢ are deterministic Lipschitz-in-space
coefficients.

» This class of SDE is useful to obtain non-gaussian stochastic models that may have several
time regimes. Such a model can be for example used
> to describe the population dynamics of parasitoid insects (see [BCP " 23])
> to capture option prices over a range of different maturities and strikes (see [CT04])
> to represent the angle dynamics of non-spherical particles in a turbulent flow (see [CBB22]).
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Introduction : additive jump models and applications

> We are interested in the approximation and the simulation of the solution process
(X¢,1€10,T]) of the SDE

t t oo _
Xo= [bx)ds+ [ [ cls X N s, o),
0 0 J—c

where N is a compensated random Poisson measure, with time-inhomogeneous
compensator measure Vy(dz)ds, and b and ¢ are deterministic Lipschitz-in-space
coefficients.

» This class of SDE is useful to obtain non-gaussian stochastic models that may have several
time regimes. Such a model can be for example used

> to describe the population dynamics of parasitoid insects (see [BCP " 23])
> to capture option prices over a range of different maturities and strikes (see [CT04])
> to represent the angle dynamics of non-spherical particles in a turbulent flow (see [CBB22]).
> Our goal is to construct an algorithm (X,,) to simulate the process (X;) and obtain rates of
convergence for the probabilistic strong error (trajectorial) between X and X.
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1. Discretisation of SDEs

» Numerical algorithms to approximate SDEs driven by a Brownian motion W are well known in
the literature:

X, = /Otb(Xs)ds+/070(Xs)dWs.
» The simplest method is given by the Euler-Maruyama scheme:
Xy =X +0(Xy) (i1 — 1) + 0(X;)) (Wi, — Wi),
where (t; = j,i =0,...,n) are the discretization steps, and n € N.

> This scheme is straightforward to implement because one knows how to simulate the law of
any increment Wy — W,, of the Brownian motion easily.
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1. Discretisation of SDEs

> A first generalisation consists in replacing the driving Brownian motion by a Lévy process L,
i.e a process L having independent and stationary increments:

X,:/Otb(XJ)ds+/0r0'(Xs YdL,.
> In this case, one may still define the Euler-Maruyama scheme:
XtH,l =X, +b(X;) (tig1 — 1) + G(Xt,-)(Lt,url —Ly),
where (t; = '7,1' =0,...,n) are the discretization steps, and n € N.
» However, simulating the increments L; — L, of the Lévy process is not something easy in

general. It is possible for some particular example, such as the so called a-stable process
Lg.
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1. Discretisation of SDEs

> A first generalisation consists in replacing the driving Brownian motion by a Lévy process L,
i.e a process L having independent and stationary increments:

t t
&:/M&m+/0X
JO 0

> In this case, one may still define the Euler-Maruyama scheme:
XtH,l =X, +b(X;,) (i1 — 1) + G()?,i)(L,M —Ly),
iT

where (t; = £ i =0,...,n) are the discretization steps, and n € N.

n’

> However, simulating the increments L; — L, of the Lévy process is not something easy in
general. It is possible for some particular example, such as the so called a-stable process
Lg.

» Thanks to the Lévy-It6 décomposition, if L has at least a moment of order 2, it can be

written
t poo
Li— // N(ds,dz) — (@m://zmm@,
0 —o0

where v is a deterministic measure called the Lévy measure of L.
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1. Discretisation of SDEs

> A second generalisation consists in replacing the driving Brownian motion by an additive
process A, i.e a process A having independent increments:

t t
X,:/b(Xs)ds+/ o(X,
JO JO

> In this case, one may still define the Euler-Maruyama scheme:
X’Hl = X’i + b(yti)(tl”rl - ti) + G(Yfi)(Atm _Ati)7
where (t; = %,i =0,...,n) are the discretization steps, and n € N.

» However, simulating the increments A; — A, of the additive process is not something easy in
general.

> Thanks to the Lévy-It6 décomposition, if A has at least a moment of order 2, it can be

written
A = // N(ds,dz) — vy(dz)ds) = // szsdz)

where (V) c(o,7] is a collection of Lévy measures.
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1. Discretisation of SDEs

> Finally, based on the Lévy-Ité decomposition, one may think of an "increments-free"
generalisation, leading to the SDE:

X, = / b(X, ds+/ / ds ,dz).
> However, in this case we are not able to give a sense to the Euler-Maruyama scheme:
X =X +0(Xy ) (i1 — 1) +27?
where (1; = L i =0,...,n) are the discretization steps, and n € N.

> Indeed, we can't define a discretisation of X that relies on the increments of an underlying
stochastic process anymore, except in the case where ¢ can be written c¢(x,z) = o (x)f(z).
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2. Approximation of a random Poisson integral

> Let F:[0,7] x R — R be a measurable function such that fOT I |F(s,2) 2 vg(dz)ds < 0. We
want to simulate the stochastic integral:

I(F) = /O ' L j F(s,2)N(ds,dz)
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2. Approximation of a random Poisson integral

> Let F:[0,7] x R — R be a measurable function such that fOT I |F(s,2) 2 vg(dz)ds < 0. We
want to simulate the stochastic integral:

= /()T /::° F(s,z)ﬁ(ds,dz)

> Taking the threshold € > 0, I(F) can be separated into it’s large jumps part /; (F) and small
jumps part I} (F):

- /UT /R\s@ F(s,2)N(ds,dz), IE(F) = / / N(ds, dz),

I(F) =1Ij (F)+1If (F).
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2. Approximation of a random Poisson integral

The large jumps : a direct simulation method

» The large jump integral can be represented by the difference of a finite random sum and a
deterministic integral:

NE(T)

//R\B (s,2)N(ds,dz) = ZFTS (M.Z°(j) //R\B F(s,2)Vs(dz)ds. (1)

3/11



2. Approximation of a random Poisson integral

The large jumps : a direct simulation method

» The large jump integral can be represented by the difference of a finite random sum and a
deterministic integral:

NE(T)

/ /M N(ds,dz) = Z F(T®(j),Z°(j / /R\B Vy(dz)ds. (1)

> In the above formula, N¢ is a (time-inhomogeneous) Poisson process with intensity function

AE(t =/ d.
@ R\B(e) vildz

=

, and jump times‘ T(j) = inf{r € [0,T],N®(t) =} ‘
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2. Approximation of a random Poisson integral

The large jumps : a direct simulation method

» The large jump integral can be represented by the difference of a finite random sum and a
deterministic integral:

£(T)

/ /R\B N (ds, dz) Z FTEG),250) //lFB (5,2)vs(dz)ds. (1)

> In the above formula, N¢ is a (time-inhomogeneous) Poisson process with intensity function

AE(t =/ d.
(1) R\B(e) Vvi(dz

» The random variables Z¢(j) for j < N(T) have conditional distribution given the jump times
given by:

=

, and jump times‘ T(j) = inf{r € [0,T],N®(t) =} ‘

vi(BNR\B(¢))

VBEB®)  PEZ()€BITU) =0 =" e
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2. Approximation of a random Poisson integral

The large jumps : a direct simulation method

» The large jump integral can be represented by the difference of a finite random sum and a
deterministic integral:

/ / )N(ds, dz) Z F(TE (), 25 (j)) / / Fls,2)vy(d2)ds. (1)
R\ B(e) R\B
> In the above formula, N¢ is a (time-inhomogeneous) Poisson process with intensity function

AE(t :/ d.
(1) R\B(e) Vvi(dz

» The random variables Z&(j) for j < N%(T) have conditional distribution given the jump times
given by:

=

, and jump times‘ T¢(j) = inf{r € [0, T],N®(1) =} ‘

vi(BNR\B(¢))
vi(R\B(¢))

> Note that if the time-dependence of v, is multiplicative, i.e if one has v,(dz) = ¢(1)v(dz),
then the latter distribution is homogeneous in time. In this case the jump sizes Z£(j) are i.i.d.

VBe B(R) P(Z()€B|TE() =1) =
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2. Approximation of a random Poisson integral

The large jumps : a direct simulation method

>

The large jump integral can be represented by the difference of a finite random sum and a
deterministic integral:

£(T)

//RB N(ds,dz) ZFT*(/ ).ZE(j)) //H 2)Ve(d2)ds. (1)

Hence, to perform a simulation of /7 (F), one needs:

. To generate the Poisson process N¢: this can be done with thinning method if the function

A is bounded, or by (eventually numerical) inversion of 7 — A(¢);

. To generate the jump sizes random variables Z¢ (j) for any j < N(T'): for usual

distributions, this can be done by inversion or acceptance-rejection methods;

. To compute the deterministic integral |; Jz\p(e) F(5,2)vs(dz)ds: it can be done analytically

or numerically, depending on the difficulty.
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2. Approximation of a random Poisson integral

The large jumps : a simple (and useful !) example
> We take the example of a 1-truncated a-stable process, i.e F(s,z) =z and
vi(dz) = f(0)]e] "<y,

where a € (0,2] and f € L*([0,7]).

. . . . e .
1. The Poisson process N¥ has intensity function 1 (r) < 2||f[|. =, allowing to use a

thinning method.
2. The jump sizes Z¢(j) are i.i.d and Z¢(1) has explicit quantile function given by

—{2p(e %~ 1)+ }é, ity e (0,1],
“a 1

vy €10, 1], Qs()’)—{ ((1—25)(e %~ 1)+ L itye (L.

3. The deterministic integral [{ [\ (o) F(s,2)Vs(dz)ds is straightforward to compute:

/ / zvs (dz)ds = </f ) </£S|Z‘Slz|z\_l_°‘dz) =0.
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2. Approximation of a random Poisson integral

The small jumps : an extension of the Asmussen-Rosinski method

» Generally, exact simulation of the small jumps integral If (F) is not possible, but we may
approximate it using the following idea:
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Trajectories? of a 0.01-truncated %—stable Trajectories of a renormalized Brownian
; d motion /LB
process Ly, i.e. v(dz) = ﬂ{‘z‘gom}‘zlﬁ) 151

! Obtained by direct simulation, which is possible in this very specific case thanks to the acceptance-rejection algorithm developped by
Dassios, Lim and Qu in [DLQ19]
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2. Approximation of a random Poisson integral

The small jumps : an extension of the Asmussen-Rosinski method

» Generally, exact simulation of the small jumps integral If (F) is not possible, but we may
approximate it using the following idea.

> We substitute the stochastic integral /7 (') with a Gaussian random variable having an
equivalent variance:

stanttf() = ([ [ (R0 Pw o )%Mo,l),

where W (0, 1) designates the standard normal distribution.
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2. Approximation of a random Poisson integral

The small jumps : an extension of the Asmussen-Rosinski method

» Generally, exact simulation of the small jumps integral If(F) is not possible, but we may
approximate it using the following idea.

> We substitute the stochastic integral /7 (') with a Gaussian random variable having an
equivalent variance:

Paw(If (F (/ / Pvy(dz)ds ) %N(O,l),

where W (0, 1) designates the standard normal distribution.

> To quantify the error made in this approximation, we will use the Wasserstein distance of
order p defined by

1
W, Sf],gfz = inf E X17X2p E,
b ) (X1.X2)Em(2Ly ) ! 4

where (X1,X2) € n(£1,%2), means that the random variables X;,X> verify Law(X;) = <.
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2. Approximation of a random Poisson integral

The small jumps : an extension of the Asmussen-Rosinski method

Proposition 1
Let p > 1. Assume that F(z, -) is non identically zero on B(1) for any ¢ € [0,T] and

/ / F(s,2)[P*2vy(dz)ds +/ (/ |F (s,z)|2vs(dz)>%+lds < oo,

Then there exists a constant s4(p), only depending on p, such that for every € € (0,1), the
following inequality holds for any 7 € [0, T]:

o ([ [ rseianas) o (0. [ irsertuians))

<d(p)

<f(§ Jse) IF(s,2) P72 vy (dz)ds ) ’
Jo Js(e) |F (s,2)[2vs (dz)ds

» The term in the right hand-side goes to zero when € goes to zero on good conditions on F (a
sufficient condition is that limy;| o sup,c(o,71 |F(s,2)| = 0)
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2. Approximation of a random Poisson integral

Idea of the proof

> The proof relies on a W,,-distance quantification of the convergence of the CLT (Rio’s
conjecture, proved by Bobkov in 2018 in [Bob18]):

For p > 1, there exists ¢, > 0 depending only on p such that if X1, ...,X,, are independent random
variables with ¥7" | Var(X;) = 1, then

w, (Sfaw i)g) x(0, 1)) <¢, CiE[Xﬂm}) ’
= i=1

P> We apply this result to the independent random variables

/ N(ds,dz), je{l,...,m},
Ti-1

where 7; = % and estimate the p +2-moment of X; using Kunita inequality for random
Poisson integrals, that we will recall later in this talk.
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3. The €-EM scheme

» This discussion allows us to define what we call the e-Euler Maruyama scheme to
approximate the process X; in introduction.

> We fix a threshold € € (0,1). For n € N*, we define 0 =ty < --- < t, = T, a discretisation of
the interval [0, 7] with constant steps, i.e #; = i%.l_et (@ie{lwn} a sequence of i.i.d
standard Gaussian random variables. We define X by Xg = 0 and

_ _ _ T li g _
X: =X +b(ti1,X; f—/ / c(s, X, 2)Vy(dz)ds
1 tiq (t 1 "*l)n i JR\B(e) (s, e ) S( )
NE (1)

+(/til(/B(s)cz(s,fiil,z)vs(dz)ds>%éi-&-. Y (TR 7).

J=NE(ti1)+1
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3. The €-EM scheme

» This discussion allows us to define what we call the e-Euler Maruyama scheme to
approximate the process X; in introduction.

> We fix a threshold € € (0,1). For n € N*, we define 0 =ty < --- < t, = T, a discretisation of
the interval [0, 7] with constant steps, i.e #; = i%. Let (&)ieq1,....n) @ sequence of i.i.d

standard Gaussian random variables. We define X by Xg = 0 and

—, — —, T 'l g _
X, =X, +b(ti_1,X;_, ) - / / (s, X;_,2)Vs(dz)ds
Jii_y JR\B(e)

NE(17)

+ (/t:1 ‘/B(ch(s,fft_ l«,Z)W(dZ,)cls) %f:i-‘r Z c(Tg(j),Yf’ I,Zg(j))‘

J=NE()+1

> We will know be giving a convergence result for X* in the L”-norm. Note that this
convergence will depend on two parameters, which are the number n of discretisation steps
and the small jumps/big jumps threshold €.
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4. Hypothesis required for L”-strong convergence

We fix p > 2 and T > 0. We consider a filtered probability space (Q,%,P, (%;);cr. ) equipped
with a standard Brownian motion B and a random Poisson measure N.

» (H1) - Regularity. We assume that there exists constants L,, L; and a measurable function
L. [0,T]xR— Ry

|b(x)_b(y)‘§Lb (|x_y|)7 xayeR7
le(t,x,2) —c(t,3,2)| S Le(t,2) Ix—yl,  x,yeR,t€[0,T],zeR.
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4. Hypothesis required for L”-strong convergence

We fix p > 2 and T > 0. We consider a filtered probability space (Q,%,P, (%;);cr. ) equipped
with a standard Brownian motion B and a random Poisson measure N.

» (H1) - Regularity. We assume that there exists constants L,, L; and a measurable function
L. [0,T]xR— Ry

|b(x)_b(y)‘§Lb (lx_y|)7 x7y€R7
le(t,x,2) —c(t,3,2)| S Le(t,2) Ix—yl,  x,yeR,t€[0,T],zeR.

> (H2) - Integrability. We assume that the function v, defined by

)= ([ et Viceo)P v,dz) 4 [ 19 VIelw.0.2)1P v(ae)

—oo

belongs to L4 ([0, T]) for some & € (0, 1].
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4. Hypothesis required for L”-strong convergence

We fix p > 2 and T > 0. We consider a filtered probability space (Q,%,P, (%;);cr. ) equipped
with a standard Brownian motion B and a random Poisson measure N.

> (H1) - Regularity. We assume that there exists constants L,, L, and a measurable function
Lo [0,T] xR — R4

[b(x) =b()| < Ly (Ix—=yl), x,y€R,
le(t,x,2) —c(t,3,2)| S Le(t,2) Ix—yl,  x,yeR,t€[0,T],zeR.

> (H2) - Integrability. We assume that the function v, defined by

w0 = ([ 1L v ie0.01P v,dz) 4 [ 19 VIelw.0.2)1P v(ae)

belongs to L' ¢ ([0, 7)) for some ¢ € (0,1].

> (H3) - A.R. Approximation. We assume that there exists €* € (0, 1] such that
> (Moments) forall.x € Rand € [0,7], ¢(t,x, *) is not identically zero on B(e*) and

T T 8

2
/ / e(t,x,2) [P v, (dz)dr + / (/ \c(t.,x,z)\zv,(dz)> dt < oo.
0 JB(e*) 0 B(e*)

> (Coupling) forall x € R and 1 € [0, T, the image measure of 1 cp(e+)y Vi(dz) by 2+ ¢(t,x,2) has a
density with respect to the Lebesgue measure on R and satisfies jé(s*) Vi(dz) = oo,
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5. Strong convergence of X° in L7 (€2) : main theorem

Théoreme 1 — (Bossy, Maurer 2023)
We assume that (H1), (H2) and (H3) hold.

(i.) Forany e € (0,€], there exists a sequence (X} )ic/o,....,y Of random variables on (Q,%), such

that for any i € {0,...,n}, Yfl_ is F;,- measurable, and verifies Law(}?;f) = Law(Yfl_). Moreover,
there exists 77i(p, T) > 0 such that

sup E[ sup |)A(fi\1’]§m( T).
ecl0.e*) i€{0,..,n}

6/ 11



5. Strong convergence of X° in L7 (€2) : main theorem

Théoreme 1 — (Bossy, Maurer 2023)

We assume that (H1), (H2) and (H3) hold.

(i.) Forany € € (0,&*], there exists a sequence (X ©)ie{0,....ny Of random variables on (Q, %), such
that for any i € {0,...,n}, X is F;,- measurable, and verifies Law(Xe) = Law(X} .)- Moreover,
there exists m(p,T) > 0 such that

sup E[ sup |X€\1’] m(p,T).
ecl0.e*) i€{0,..,n}

(ii.) The following inequality stands true for any € € (0,€*]:

.
<n U0 4 87(e),

[ up 1 =X X; |
i€{0,....

Q)
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5. Strong convergence of X in [7(Q) : main theorem

Théoreme 1 — (Bossy, Maurer 2023)

We assume that (H1), (H2) and (H3) hold.

(i.) Forany € € (0,&*], there exists a sequence (X ©)ie{0,....ny Of random variables on (Q, %), such
that for any i € {0,...,n}, X is F;,- measurable, and verifies Law(Xe) = Law(X} .)- Moreover,
there exists m(p,T) > 0 such that

sup E[ sup |X€\1’] m(p,T).
e€l0,e*) i€{0,...,n}

(ii.) The following inequality stands true for any € € (0,€*]:

.
<n U0 4 87(e),

H sup ‘Xt, |

i€{0,.... (Q)

2\ 2

1
] (f’:(kl fB(s) IC(S XE 1’Z)p+2vs(dz)ds>

where &) (€) = E
g l;l i Tsge) le(s. XE | 2)Pvs(dz)ds

satisfies lim. 0 8, (€) = 0 when the following sufficient condition holds:

lim sup |L.(1,2)| =
[z1=04¢fo,7]
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6. Strong convergence of X* in L[P(Q) : corollary

Corollaire
We assume in addition to (H1), (H2) and (H3) that there exists a constant Cr satisfying

W(sx,2) € [0.T) x Rx B(e"),  [e(t,x,2)] < Crlel (1+ ). )

> Then, for any € € (0,€"], the LP-strong error of the (€, F)-representation of the) £-EM scheme
X¢ satisfies:

<n {p(1+C }+gf

sup |X,, X,f| .

i{0,...

7/ 11



6. Strong convergence of X* in L[P(Q) : corollary

Corollaire

We assume in addition to (H1), (H2) and (H3) that there exists a constant Cr satisfying

W(sx,2) € [0.T) x Rx B(e"),  [e(t,x,2)] < Crlel (1+ ). )

> Then, for any € € (0,€"], the LP-strong error of the (€, F)-representation of the) £-EM scheme
X¢ satisfies:

> Moreover, suppose we have y, € LZ([O,T]) (i.e. £ = 1). With € taken such that

<n {p(1+f§ }+£f

Q)

sup |X,, X,f|
i{0,...

e<n (7 P)/\s

we obtain the following convergence rate for the LP-strong error:

1
<n r.

sup
i€{0,...,n}

Xi; —

1

‘u’(g)
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7. ldeas of the proof

The continuous Euler-Peano scheme as a pivot term

P> We use as a pivot term the SDE with frozen coefficients (or Euler-Peano scheme) X

defined by
~ +oo ~
X, = / ds+// c(s,X, 11(5 ,2)N(ds,dz),

where 1(t) =t; if t € [t;,1;11).
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7. ldeas of the proof

The continuous Euler-Peano scheme as a pivot term

P> We use as a pivot term the SDE with frozen coefficients (or Euler-Peano scheme) X

defined by
oo -
/ ,,(3 ds+// c(s,X, ,7(? ,)N(ds,dz),

where 1(t) =t; if t € [t;,1;11).
P We first prove a rate of convergence for X and then compare X with our scheme:

Proposition 2 - LP-convergence of the Euler-Peano scheme

Assume (H1) and (H2). Then for all n € N*,

<o liin )

sup |Xt—)?r| Q)

1€[0,7]
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7. ldeas of the proof

The continuous Euler-Peano scheme as a pivot term

P> We use as a pivot term the SDE with frozen coefficients (or Euler-Peano scheme) X
defined by

~ t 1 ~+oo0 ~ ~
%= [[o@yds+ [ [ els. Xy N asde),

where 1(t) =t; if t € [t;,1;11).
P We first prove a rate of convergence for X and then compare X with our scheme:

Proposition 2 - LP-convergence of the Euler-Peano scheme

Assume (H1) and (H2). Then for all n € N*,

<o liin )

sup |X; —)?r| Q)

1€[0,7]

> The proof of Proposition 2 relies on a Gronwall argument as it is usually the case for a
standard strong convergence proof, but has some specificity due to the non-continuous
paths of the process and the time-inhomogeneity of the jumps.
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7. ldeas of the proof

Kunita inequality
» To prove Proposition 2, we need a tool to estimate the 1”-moments of a stochastic Poisson

integral. Since these types of integrals are martingales, one may want to use the
Burkhélder-Davis-Gundy (BDG) inequality :

E

sup M, "} < CBCE(M, M),

0<s<r

8/ 11



7. ldeas of the proof

Kunita inequality
» To prove Proposition 2, we need a tool to estimate the 1”-moments of a stochastic Poisson

integral. Since these types of integrals are martingales, one may want to use the
Burkhélder-Davis-Gundy (BDG) inequality :

0<s<rt

E { sup |MSP} < CBSE(m, M)},

> However, in the case of discontinuous process, the quadratic variation [M,M] is not equal
to the predictable quadratic variation (M, M), and we only have tools to estimate the latter.
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7. ldeas of the proof

Kunita inequality

» To prove Proposition 2, we need a tool to estimate the 1”-moments of a stochastic Poisson
integral. Since these types of integrals are martingales, one may want to use the
Burkhélder-Davis-Gundy (BDG) inequality :

E { sup W} < CBSE(m, M)},
0<s<rt

> However, in the case of discontinuous process, the quadratic variation [M,M] is not equal
to the predictable quadratic variation (M, M), and we only have tools to estimate the latter.

» For this reason, we use another inequality that is more specific to Poisson integrals:

Lemma (Kunita inequality)

Let F be a predictable stochastic process and I, = [¢ [, F(s,z)N(ds,dz). Then for all p > 2 there
exists a constant C depending only on p and T such that
ds+C / [ / (s,z)|”vs(dz)} ds

<cf= {(/ Fs,2) w(dz))p/z

E | sup |L|P

s€[0,7]
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7. ldeas of the proof

Proof of proposition 2 - The Brownian case

> Let's first recall the scheme of the proof in the standard (Brownian noise) case.
> Setting E(1) = sup,c(o q 1Xs 7)N(s||u;(9), we may use Minkoswki integral inequality and BDG
inequality to obtain the upper-bound

1 ~ t ~ 2
800 < 190%) = byt 1005 = 0o s

» Then we use the Lipschitz property of b and ¢ to get

1
t - t - 2
60 < [ 16Tl + [ 16— s

» We may use the pivot Xy (s) to separate the two terms of the right-hand side into a local error
term and a Gronwall term, as follows:

1

! o« ! 2 ()2 2
B0 < (e X i+ 860+ [/~ X By + (57
> Finally we may bound the local error terms using the same inequalities and s — 1 (s) < %
allowing to apply a Gronwall-type lemma. This gives a rate of convergence of n’% , Where the
power 1/2 comes from the BDG inequality.
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7. ldeas of the proof

Proof of proposition 2 - The Poisson case

P> We now move to the (sketch of the) proof in our case.

> Setting (1) = supc(o, II1X; —)?_y”lp(ﬂ), we may use Minkoswki integral inequality and
Kunita inequality to obtain the upper-bound
»

S/Ot”b(Xs) - () lp () ds + </IIE (/j:Q(C(S,XA,Z fc(sf(,,(s),z))zvx(dz)) 2} ds> '

(// o5, X0,2) — (5, X s )\”]v&dz)d)ll}

» Then we use the Lipschitz property of b and ¢ to get

t _ ot
< [ 1~ Faollayas-+ ([ w0

where we recall that:

=

1

r P
ds) s
(Q)

0o r/2
wpm:([M|L(rz>v\c<z0z)\\ v,(dz) + [ Iele) V10, P vi(a)

n(s)
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7. ldeas of the proof

Sketch of the proof of Theorem 1. To prove Theorem 1, we need to do three things.

1. Construct a version X¢ of the scheme that lives on the same probability space as X and
satisfy an optimal coupling property with respect to the 7j,-distance: we will detail this
construction on the next slide.

2. Find a uniform bound in € for X¢: this is done by a standard Gronwall argument using some
discrete martingale properties of the construction of X¢ and the discrete BDG inequality.

3. Derive an upper-bound for the L”-norm of X — X¢: this is also done by a Gronwall argument

using the optimal coupling property and Proposition 1 to get an upper bound for the small
jump approximation part, leading to the contribution &) (¢) in the result of Theorem 1.
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7. ldeas of the proof

More details on the construction of X¢

> For fixed x, we denote Y;(x) = f,fL] Jace) ¢(s,x,2)N(ds,dz). Our aim consists in constructing
amap T; : R x R — R that optimally transports (for the 7),-distance) Law(Y;(x)) to the
centred normal distribution A;(x) of variance ftil—l Jae) c(s,%,2)>vy(dz)ds. In addition, this
map must be measurable with respect to the parameter x.

8/ 11



7. ldeas of the proof

More details on the construction of X¢

> For fixed x, we denote Y;(x) = [tf:] Jace) ¢(s,x,2)N(ds,dz). Our aim consists in constructing
amap T; : R x R — R that optimally transports (for the 7),-distance) Law(Y;(x)) to the
centred normal distribution A;(x) of variance f,fil fB<€)C(s,x,z)2Vs(dz)ds. In addition, this
map must be measurable with respect to the parameter x.

> We set )A(,% =Xo. Forie{l,...,n},letQ; = Law()?fi?] ). Applying Theorem 1.1 from
Fontbona-Guérin-Meleard (see [FGM10]), there exists an application 7; : R x R — R which
is (B(R) @ B(R),B(R))-measurable such that for Q;-almost every x € R, one has
B[|Yi(x) — Tilx, Yi(x)) "] = Wy (Law(Y;(x)), Ni(x))".

» Then, given )A(’;i1 , we can set

1 —~ ~
XE 7Xft: 1+b( 1 1)( —li- 1)+T( PR ( t, 1 /t ]/R\B(E)C(S,X;"H,Z)N(ds,dz).
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7. ldeas of the proof

More details on the construction of X¢

> For fixed x, we denote Y;(x) = [th] Jace) ¢(s,x,2)N(ds,dz). Our aim consists in constructing
amap T; : R x R — R that optimally transports (for the 7),-distance) Law(Y;(x)) to the
centred normal distribution A;(x) of variance f,fil fB<€)C(s,x,z)2Vs(dz)ds. In addition, this
map must be measurable with respect to the parameter x.

> We set )A(,'f] =Xo. Forie{l,...,n},letQ; = Law()?fi?] ). Applying Theorem 1.1 from
Fontbona-Guérin-Meleard (see [FGM10]), there exists an application 7; : R x R — R which
is (B(R) @ B(R),B(R))-measurable such that for Q;-almost every x € R, one has
B[|Yi(x) — Tilx, Yi(x)) "] = Wy (Law(Y;(x)), Ni(x))".

» Then, given )A(fiil , we can set
ti - -
XE =Xt +b —ti ) +T; ( VY, / / c(s,XE ,2)N(ds,dz).
ti1 ( i 1)( i— 1) iy t, 1 1 JRB(E) ( i ) ( )
> By construction, X° and X¢ have the same law, and one can check that ()A(fi,O <i<n)isan

adapted sequence to the filtration (%;,,0 < i < n), and that (T; (Xf I,Y-()A(,";fil ),1<i<n)
is a sequence of (discrete) martingale increments relatively to th|s filtration.
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8. Numerical simulations

There are two limitations to a numerical evaluation of the strong convergence rate in our case that
we want to point out:

1. The lack of exact trajectory solution.

Processing the computation of the strong norm of the error always poses the problem of
simulating a reference solution trajectory, that is not available in the jump case. We chosed to
compute an approximate reference solution, by pushing the approximation parameters to a
limit value which serves as a bound for the experiments with coarse parameters. This forces
us to restrict the numerical test in the increment case c(s,x,z) = o(x)f(s,2).
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There are two limitations to a numerical evaluation of the strong convergence rate in our case that
we want to point out:

1. The lack of exact trajectory solution.

Processing the computation of the strong norm of the error always poses the problem of
simulating a reference solution trajectory, that is not available in the jump case. We chosed to
compute an approximate reference solution, by pushing the approximation parameters to a
limit value which serves as a bound for the experiments with coarse parameters. This forces
us to restrict the numerical test in the increment case c(s,x,z) = o(x)f(s,2).

2. The sampling of the two-parameters increments.

For the £-EM algorithm, we have two control-parameters, the time step 1/n and the small
jumps cut €. Once the choice of ¢ is fixed, the increments of the process

j;)' fR/B(S) zﬁ(d&dz) can then be simulated on a very fine time grid, and next aggregated
together to produce increments on a coarser time grid.
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8. Numerical simulations

Rate of convergence in terms of the norm exponent p

We investigate the behaviour of the LP-strong error with respect to the variations of p > 2. For that
purpose, we consider the following example:

' oo ~ d
Xt:/()COS(Xs)dS+/()/ sin(X,- ) z N(ds,dz), vs(dz)ds:ﬂﬂz‘slo}‘z%/z ds.

10"

Strong error

107!

10-° 104 1074 102 10! 100
Step size T/n

. 5 <Ei <€ ma ) . . .
Figure 1: Behaviour of HSUPis {0,y | = X min e | with n, for various L” -norms (lines with makers),

Q)

and the corresponding theoretical (dash lines) rates.
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8. Numerical simulations

Rate of convergence with low time-integrability

__2
When , is not more than L with ¢ € (0,1), we may only recover the rate n 7(1+0) . We
investigated if this loss could be observed numerically with the following equation:

t t oo - d:
X,=/0sin(Xs)ds+/0/ cos(X,- ) zN(ds, dz), vs(dz)ds=1{|z‘§10}‘z‘Tz/2sﬁds, Be(~1,0]

w0

Strong error

- -

Mmax |

with n, for various L -norms (lines with makers),

Figure 1: Behaviour of HsuPiE{O,‘.,,n} |)7fimi"’" —Y,SI_"‘““'

and the corresponding theoretical (dash lines) rates.
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9. Conclusion

» We developed a numerical scheme to approximate a class of time-inhomogeneous jump
SDEs based on the Asmussen-Rosinski technique, and derived a rate of convergence for
the L/-strong error by optimal transport technique, using bounds for the CLT convergence in
W,-distance.

> In the setting we are and assuming more regularity on the coefficients, we believe that it is
possible to also derive a weak error rate for this scheme. This work is still in progress, but
we have good confidence to obtain the following result:

Theorem (Work in progress)

Assume (H1) and "good enough" space and time regularity of the coefficients. Assume that the v,
are dominated by a Lévy measure . Let f =inf{a > 0, f, . |2|*p(dz) < =} the
Blumenthal-Getoor index of the indivisible distribution characterised by L.

Let ¢ € B*(R) be such that for every k € {1,...,4},

A

S ()| < €1+ jal7) @

for some g < %. We have the following weak error upper-bound:

[Blo(x5)] — Blo(XD)]| <n " +& P
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