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Introduction

Wind gusts are small-scale wind
fluctuations that are by nature
intermittent.

IV(t+3)-V(t)!
35

Given a time scale T (here 3 seconds) and a .
threshold & (here 1 m/s), characterising 25
intermittent fluctuation

|AU(7)|| = ||U(t+7) — U(2)|| > & having non " .
Gaussian properties os *'W'J N M )\Mm\

t(s)
» Some predictive frameworks are ready to use, but assuming Gaussian statistics.

» Goal : develop a stochastic model that take into account Kolomogorov’s refined
theory. This involves stochastic processes with memory.

» Kolmogorov’s theory predicts multiscaling such as anomalous power-laws emerging at
the level of the velocity increments : E[|AU(7)[P] ~ 7¢(), with { non-linear function.
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Plan of the talk

1. Physical context and modelling

2. A Volterra process and its Markovian approximation

3. A martingale approach based on orthogonal decomposition
4. Weak convergence analysis of the Markovian approximation

> Navier-Stokes equation:

Qi +1i-Vii = —Vp+ fs All
» Energy dissipation:

e(t,x) = ¥ (traceVT uVu))(t,x)
» In Lagrangian setting,

i
X; =X0+/ u(s,Xs)ds
0

v
&§=5 (traceVT uVu)(1,X;))

A direct numerical simulation of 2D
turbulence, provided by Nicolas Valade
(Calisto Team INRIA)
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1. Physical context : Multiscality in turbulence

Kolmogorov’s refined theory for fluctuations of the energy dissipation € (can be seen as the
volatility behind the velocity U): [Kolmogorov, 1962] [Frisch and Parisi, 1985] [Frisch, 1995]:

>

>

| 4

stationarity and scaling : E[g] = vrﬁz (Kolmogorov 1941);

log-normality of &: with Var[log &] ~ log (%) ; T = Jo = (u(r+0)u(r))do

(llalP) o) || )0)

¢
multiscaling of the one-point statistics: E[e}'] ~ (%) , where {(p) is a non-linear
convex function;

power-law scaling for the coarse-grained dissipation and the velocity: in the inertial range,
Tn LLTKL TL,
1 pt+t P
E { — / &
TJt

E|U(t+7) — U()P) = 150,

} ~ ),
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1. Physical context : In search of log correlated processes

We seek to construct a stationary process & = €exp(yX; — g VarXj), where X is a
log-correlated stationary process.

[Forde et al., 2022] consider the re-scaled Riemann-Liouville fractional Brownian motion (Z7),
t
zH =/ (t—s)" 2 Haw,
0

for H € (0, 1), for which Ry (s, ) := E[ZHZH] = [$" (s—u)H~ 2 (1— u)¥~ 2 du. Also,
Ry (s,t) — R( t), with H — 0, and for s < 1,

t—s

R(s,t) = <(‘/+\[)) ln( ! )+21n(\/+\[)

They showed that ¢/ (dr) = exp ( H % Var[Z,H]) dt tends to a Gaussian multiplicative
chaos (GMC) random measure ¢y, for y € (0,1), as H tends to zero. (the convergence is in law

for y € (0,v/2)).
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1. Physical context : In search of log correlated processes

» [Letournel, 2022] propose, in her PhD thesis, the following doubly regularised H-fBm as a
stationary process.

» Consider, for 0 < 7y < 7,

H,T,7

1
X, :/ [(t—r+r,,)H’%—(t—r+TL)H*ﬂdW, 1)
» For H = 0, the process is still well defined and stationary.
» One can compute its correlation function and variance, and
1
RO (s,1) = E[X?.,rn.,nxg,rn,n] =R(t—s) ~log, P Ty L s <1< T
— S

0,7y,

Var[X, | ~log(t1/Tn)
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1. Physical context : a stochastic model for the velocity

» Based on this stationary Volterra process, we are able to construct a stochastic model for
the dissipation and velocity:

& —Eexp (yX?’T"’TL - gv;ar(xg”"*”)) . y,E>O,

1 1 t
Ui=Uo~ [ —Uds+ [ Ve,
0 1L 0

where B is a standard Brownian motion independent from W.
» We arbe interested in the statistics of the coarse-grained dissipation:

p 1 to+t
DY = —/ &ds ; t,t9 > 0.
tJy

and of the velocity increments
Ufo =Ut1y — Uy s t,1 > 0.

» We will say that U™ and D" are integrated models with respect to the underlying Volterra
process X0
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2. A Volterra process. Mathematical setting

Fix T > 0 and denote T = [0, T]. We consider:
> W= (W, ,W;"),cr, astandard 2D Brownian Motion,
> K:R; — R be acompletely monotone kernel : K(r) = [;"“e A (x)dx, A
> F the unique primitive of K2 such that F(0) = 0.

Define:

t
vieT X,:/ K(t—s)dWs

+oo t
= K(t+s)dW, + / K(t—s)dW; .
0 0

X X'

Proposition

Assume that F(e0) = ET F(x) exists and lies in (0,+oc0). Then the process X is a well-defined
X (==
stationnary Gaussian process, with covariance function
2 tAS
V(s,t) €T, E[XX,] = K(t—r)K(s—r)dr,

—oo

and variance Vr € T, Var(X;) = F(0).
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2. A Volterra process. Mathematical properties

The process X™ (and X when it makes sense) is:

2
> A semimartingale with respect to the filtration of W if and only if fOT (%{(r)) dr <o

(from [Basse, 2009][Theorem 4.6]).
» Not a Markov process except if K is constant.

» For the H-fractional kernel K(r) = rH=1/2 Xt is non-Markov and non-semimartingale.

> ForK(r) = (r+1ty) /2= (r+1,)"1/2, X and X+ are non-Markov semimartingales.
n

The processes X and X belong to the wider class of Stochastic Volterra Equations:
t 1
X =x; +/ b(t,s,Xs)ds—F/ o(t,5,X;)dW,
0 0

with b =0, o(t,s,x) = K(r—s), and respectively x, = 0 and x; = X; .
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2. A Volterra process. The need for an approximation

Let ¢ be a smooth real-valued function.

» Computing E[¢ (X7)] by Monte-Carlo method is not a big deal since the law of X7 is
Gaussian and X7 can be sampled exactly.

» However, due to the non-Markovianity, there is no systematic way to generate a trajectory
of X until time 7.

» This is required to estimate statistics of integrated models based on X such as

oo ([ )]

Let0 =1y <t <--- <t, =T be a discretisation of T. We are interested in the approximation
of a trajectory (Xy,,...,X;,) of the process X and associated convergence analysis.
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2. A Volterra process. Markovian approach from [Carmona et al., 2000]

Applying the stochastic Fubini theorem and discretising the Laplace transform of K, we get:

/0 "K(i—s)aw; = /0 ’ ( /0 +°°e*<f*S>)f;L(x)azx) aw;
/()+ml(x)dx (/Otef(t*s)xdW;r>

m

.
Y Wity
i=1

R

where
> (Wi, xi){1<i<m} iS @n appropriate Gauss quadrature of order m for f0+°° f(x)A(x)dx,
> (Yf"),e[oﬂ is a (Markov) Ornstein-Uhlenbeck process starting from zero :
dYfi = —x;Y{idt +dw,;"
Y =0.
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2. A Volterra process. A simulation strategy

This formal discussion suggests the following strategy to approximate (Xy,, ..., Xz, ).
1. Sample the “initial condition” (X, ,...,X, ).
2. Sample the correlated OU processes (Y;",...,Y;" )icqs...}-

3. Compute X;, = X, + Y/, w;Y; foreachi € {19,...,1,}.

For K(r) = (r+1ty)~"/? — (r+ 1)~ !/2, one has the Markovian representation

Foo o= TnX _ p—TLX t
X =X —_— ~=xgwi ) dx.
t t +/0 \/)76 (/0 € s X

Pertinent choices for the quadrature are:

» Fix an upper-bound B > 0 and use Gauss-Jacobi weights and nodes for integrals of the
form [, £(x)(1—x)*(1 4 x)Pdx to approximate JE A (x)Yidx (with o = 0; B = —0.5).

» Use weights and nodes associated to generalised Gauss-Laguerre quadrature for integrals
of the form [, f(x)x%e ™ dx with ot = —0.5.
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2. A strong error result for the Markov approximation

> Form € N*, we set K,,(r) = Y12, wie™™", so that

m 13
Y wiyd = / Ko — 5)dW,
i=1 0

» We set for r € T: .
X" =X, +X,+’m:X,_+/ K (t—s)dw;.
0

One has the following strong convergence rate from [Alfonsi and Kebaier, 2024]:

Theorem (Theorem 3.1 from

There exists a constant C > 0 such that forany 7 € T,

B0 xR < (/1K) K)o

We are interested in the weak convergence rate, i.e in finding an upper-bound for

[E[¢(X7)] —E[o(X7)]]

in terms of a distance between K and K™, where ¢ is a smooth real-valued function.
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3. The orthogonal decomposition from [Viens and Zhang, 2019]

LetF =o(W; ;s€(0,7]) forr€T.

» Standard method of proof for weak convergence relies on the regularity of
u(t,x) = E[¢(Xr)|X; = x] and the associated PDE.

» This does not apply to X which is a non-Markovian process. However, one can dismantle X;
with a Chasles relation:

Xs = X, +O.+1
+oo

t s
K(s+7r)dW, + / K(s—r)dW,” + / K(s—r)dW,,
0 t

where:

> @) = [§K(s—r)dW," is F-measurable for all < s,

> X, = [, " K(s+r)dW; and I' = [ K(s—r)dW," are independent of F;.
Note that in particular, (©%.),cr is a F-martingale.
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3. The orthogonal decomposition from [Viens and Zhang, 2019]

Using the orthogonal decomposition presented above and the usual properties of conditional
expectation, we have for all € T:

El¢(X7)|F] = E[p(Xs +Or+17)|F]
= u(taG)tT)’

where u(t,x) :=E[¢(X7")] =E [¢ (X7 +x+1)].

By Gaussian computations, one easily show the following Lemma:

Forx € Rand (s,7) € T? such that 7 < s, let

Xy = Xy +x+1L
Then for any p € Ry, there exists a constant C,, € (0, 4-c0) such that

sup E[e”X] < Cpeh™.
selt,T)
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3. The orthogonal decomposition : a PDE satisfied by u

We make the following assumption on the regularity of ¢:

Hypothesis (H1)
¢ € €3(R) and that there exists Cy, k > 0 such that for g € {¢,¢’, 9"},

g) < Coll+e).

This lead us to the following result on the regularity of u:

Proposition
Assume (H1). Then u € €12(R) and
du I %u
E(WC) = ;K (T—f)ﬁ(hx)
u(T,x) = E[p(X; +x)].
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3. The orthogonal decomposition : a PDE satisfied by u

Scheme of proof:

> Using the regularity of ¢, one can show that u(z, -) € €>(R) by theorem of differentiation
under the sign E, and then that u(-,x) is absolutely continuous applying It formula on
(X +x+I}) betweens=r+hand s =1.

> Applying the 1t6 formula on u(z, ®%), we obtain

du(t,0,) = (3“(r®’)+;1<2(r )‘;Z(t®’))dz+1<(r— )%(t@’)dW,.

> Butu(r,0%) = E[¢(Xr)|F] is a martingale, hence the drift term must vanish, that is

du 1, d%u _
S LT

u(T,x) = ¢(x).
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4. Weak convergence. Main result

This leads us to the following weak convergence result for X;":

Proposition

Assume (H1). Then there exists a constant C > 0 independent of m such that:

o)l -Slo0)ll < c| [ K0~ K0ar

Note that for ¢ (x) = x2, the Itd isometry yields

slocxn)] - S0l = | [ (620 - K3
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4. Weak convergence. Main result.

Scheme of proof:

>
>

From the proposition above one can write [E[¢ (X7)] —E[¢ (X}")]| = [E[u(T,X}) — u(0,0)]|.

Set ©" = [ Kuu(s —r)dW;" and applying Ité formula:

1

Eu(T, @Tm)fu(OO]_IE/ { (5.05") + 3

9%u .
K2(T— )3x2 (s,@}m)}ds.
Using the PDE satisfied by u, the right hand-side boils down to

%]E/OT{g—i’;(s,@?m)(l(,zn(Tfs)sz(Tfs))}ds.

Then an easy way to conclude would be to push the absolute value inside and use the
upper-bound

82 S,m
IE‘(9 2(s o)

5"
< Cyr ( +supRE {eKW’ X }) < oo,

seT

but this will lead to a worse rate of convergence.
Instead we use a development to the second order by applying I1t6 formula again to

axz 5 (s, C m)

18/ 21



4. Weak convergence. Case of an integrated model.

> Consider D; = [} w(X,)ds with y being a positive, smooth function. One has the less trivial
martingale decomposition:

E[®(Dr)|F:] =E {ep (D, + /t ' v? (Xs)ds) m]

T
=E {@ (D, +/ v (! +1§)ds> |°J,}
t
= v(t7Dt7®it,T])7
where v(t,x,0) = E; . [®(Dr)] = E[®(Dr)|D; = x,0" = o] for all
(t,x,0) € TxRx C(T,R).
» One can show that v satisfies the following Path-Dependent PDE (PPDE):

v 2 2
%(nx,w)ﬂyz(w,)g (t,x,0)+ = IV( )3 = (t,x, w)+1<§ = (t,x, ), (G’,G’)>:O

v(T,x,0) =D (x)
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Conclusion and perspectives

» Using the orthogonal decomposition from [Viens and Zhang, 2019], we are able to obtain
a weak convergence result for the Markovian approximation of (X;),cr.

> We believe that the rate of convergence obtained at the level of the process (X;);cT can be
extended to integrated models.

» This would require to deal with functional 1t6 formula and path-dependent PDEs (see
[Viens and Zhang, 2019] and [Bonesini et al., 2023]), making the proofs more intricate.

Beyond this generalisation, it would be also interesting to:

1. Understand how the L!-distance between K2 and K2, can be controlled in the case of
Letournel’s kernel, depending on the chosen quadrature method.

2. Integrate the approximation of the initial condition in the convergence analysis (for the
stationary case X; # 0)

3. From a modelling point of view, understand better in what extend the intermittency
properties such as E[| /7 eyds|P] ~ t5(P) are recovered with the Volterra model and with
its Markovian approximation.
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