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When they are driven by a Lévy process whose increments can be simulated exactly, the simulation
of stochastic differential equation with jumps can be straightforward via an Euler scheme. However,
this is only possible in a few restrictive cases, which arise the need for a general method that works for
a larger class of SDEs. The approach taken here follows the ideas of Asmussen-Rosinski in [AR01],
and consists in simulating exactly the large jumps of the process, while approximating the small
jumps by Gaussian variables. We are inspired by the ideas of Fournier in [Fou12], using Wasserstein
techniques to perform a strong error analysis.

Lp-wellposedness

Our generic SDE, defined for t ∈ [0, T ]:

Xt = X0 +

∫ t

0
a(s,Xs)ds +

∫ t

0
b(s,Xs)dWs +

∫ t

0

∫ ∞

−∞
c(s,Xs−, z)Ñ(ds, dz), (1)

•N(ds, dz) is a random Poisson measure with time-dependent compensator νs(dz)ds

• Ñ(ds, dz) = N(ds, dz)− νs(dz)ds is the compensated Poisson measure.

Lp-wellposedness framework of [BP20] with time-Hölder condition:

(H1) - Time-Hölder and Lipschitz: The drift and diffusion coefficients a(t, x) and b(t, x)
are Hölder w.r.t. t and Lipschitz w.r.t. x. The jump coefficient c(t, x, z) verifies:

|c(t, x, z)− c(t, y, z)| ≤ Lc(t, z)|x− y|, x, y ∈ R, t ∈ [0, T ].

(H2) - Integrability: X0 ∈ Lp(Ω) and

∫ T

0

(∫ ∞

−∞
|F (t, z)|2νt(dz)

)p/2

dt < ∞,

∫ T

0

∫ ∞

−∞
|F (t, z)|pνt(dz) < ∞,

for F (·, ·) = Lc(·, ·) and F (·, ·) = c(·, 0, ·).

Application : stochastic orientation of rods in 2D turbulence

We consider intertialless rods in a turbulent flow with po-
sition equation dX(t)/dt = v(X(t), t), coupled with a unit
orientation vector p following Jeffery’s equation :

d

dt
p = Ap− (pTAp)p, (2)

where A denotes the gradient tensor of the fluid-velocity
v. The figure on the left, obtained in [CBB22], shows the
vorticity and velocity fields obtained as Direct Numerical
Simulation (DNS) of 2D Navier Stokes.

After averaging on the gradient tensor A at the equilib-
rium regime, a Brownian SDE followed by the unfolded angle
θt = arctan(p2/p1) has been derived in [CBB22]. To take in
account the effects of the vertices as brutal variations of the
angular displacement, we added a jump term leading to

θt =

∫ t

0
a(θs)ds +

∫ t

0
b(θs)dWs +

∫ t

0

∫ ∞

−∞
b(θs)Ñ(ds, dz),

(3)

where a(x) and b(x) being linear combining of cos(x) and

sin(x), νs(dz) = (s1/2 ∧ T ∗)|z|−1−α 1{|z|<T ∗} , T ∗ being

the average lifetime of the vertices.

General framework for the simulation of a Poisson integral

The stochastic Poisson integral can be separated into large jumps and small jumps :

∫ T

0

∫ +∞

−∞
F (s, z)Ñ(ds, dz) =

∫ T

0

∫

R\B(ε)
F (s, z)Ñ(ds, dz) +

∫ T

0

∫

B(ε)
F (s, z)Ñ(ds, dz) .

A. Numerically tractable representation of large jumps

∫ T

0

∫

R\B(ε)
F (s, z)N(ds, dz) =

N ε(T )∑

j=1

F (T ε(j), Zε(j))1{R\B(ε)}(Z
ε(j)), where





Nε(T ) is a time-inomogeneous Poisson process with intensity λε(t) =
∫
R\B(ε) νt(dz),

T ε(j) = inf{t ∈ [0, T ], Nε(t) = j} are the jump times of Nε,

Zε(j) =

∫

R\B(ε)
zN(T ε(j), dz)−

∫

R\B(ε)
zN(T ε(j − 1), dz) are the jump sizes of Nε.

The jump sizes Zε(j) has conditional distribution P (Zε(j) ∈ B | T ε(j) = t) =
νt(B ∩ R\B(ε))

νt(R\B(ε))
and can be simulated by inversion or rejection method for simple cases.

B. Gaussian approximation of the small jumps
We approximate the small jumps by a Gaussian r.v, making use of the following bound in Lp-Wasserstein distance. The proof rely on a Berry-Essen type bound for the CLT obtained by Bobkov in [Bob18].

Proposition: Lp-Wasserstein approximation bound
Assume that F satisfies (H2) for p ≥ 2 and that for any s ∈ [0, T ], F (s, ·) does not vanish on B(ε) and has at most polynomial growth. Then, there exists a constant Ap only depending on p such that
the following inequality holds for any r, t ∈ [0, T ]:

Wp

(
Law

(∫ t

r

∫

B(ε)
F (s, z)Ñ(ds, dz)

)
, N

(
0,

∫ t

r

∫

B(ε)
|F (s, z)|2νs(dz)ds

))p

≤ Ap

∫ t
r

∫
B(ε) |F (s, z)|p+2νs(dz)ds

∫ t
r

∫
B(ε) |F (s, z)|2νs(dz)ds

−−−→
ε→0

0

Numerical scheme

Let ti = iTn . Define the numerical scheme X by Xt0 = X0 and for each i ∈ {1, . . . , n} :

Xti = Xti−1
+ a(ti−1, Xti−1

)
T

n
+ b(ti−1, Xti−1

)(Wti −Wti−1
) +B(Xti−1

) +

∫ ti

ti−1

∫

R\B(ε)
c(s,Xti−1

, z)Ñ(ds, dz), (4)

where the Gaussian r.v. B(Xti−1
) is the 2nd component of the Lp-Wasserstein optimal coupling between Law

(∫ ti
ti−1

∫
B(ε) c(s, x, z)Ñ(ds, dz)

)
and N

(
0,
∫ ti
ti−1

∫
B(ε) c(s, x, z)νs(dz)ds

)
, taken at x = Xti−1

.

Main theorem : Strong error convergence

Assume (H1), (H2), and that c(s, x, ·) does not vanish on B(ε). Let η(t) = ti for t ∈ [ti, ti + 1).
Then:

1. There exists m(p, T ) > 0 such that sup
t∈[0,T ]

E[|Xη(t)|p] ≤ m(p, T ) < ∞,

2. One has E

{
sup

t∈[0,T ]
|Xη(t) −Xη(t)|p

}
≤ Cp,T

(
1

n(pγ)∧1
+∆n,p(ε)

)
, where Cp,T > 0 does not

depends on n, and the coefficient ∆n,p(ε) is defined by

∆n,p(ε) =

n∑

i=1

E



∫ ti
ti−1

∫
B(ε) |c(s,Xti−1

, z)|p+2νs(dz)ds
∫ ti
ti−1

∫
B(ε) |c(s,Xti−1

, z)|2νs(dz)ds


 .

3. If in addition c(s, x, ·) has at most polynomial growth, then ε can be chosen small enough to get:

∥∥∥∥∥ sup
t∈[0,T ]

|Xη(t) −Xη(t)|
∥∥∥∥∥
Lp(Ω)

≤ C ′
p,T

1

nγ∧(1/p)
.

Numerical simulations
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Strong error evolution

SDE : Xt =

∫ t

0

cos(Xs)ds+

∫ t

0

∫ ∞

−∞
sin(Xs−)zÑ(ds, dz)
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Renormalized PDF
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PDF of the DNS with on the left (showing Lévy wings), versus PDF of the model (3) on the right.
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