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When they are driven by a Lévy process whose increments can be simulated exactly, the simulation [ Application : stochastic orientation of rods in 2D turbulence
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of stochastic differential equation with jumps can be straightforward via an Euler scheme. However,
this is only possible in a few restrictive cases, which arise the need for a general method that works for
a larger class of SDEs. The approach taken here follows the ideas of Asmussen-Rosinski in [ARO1],
and consists in simulating exactly the large jumps of the process, while approximating the small
jumps by Gaussian variables. We are inspired by the ideas of Fournier in [Foul2|, using Wasserstein
techniques to perform a strong error analysis.

We consider intertialless rods in a turbulent flow with po-
sition equation dX (t)/dt = v(X(t),t), coupled with a unit
orientation vector p following Jeftery’s equation :
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P Ap — (pT Ap)p, (2)

- [P-wellposedness
where A denotes the gradient tensor of the fluid-velocity
v. The figure on the left, obtained in [CBB22|, shows the

vorticity and velocity fields obtained as Direct Numerical
Simulation (DNS) of 2D Navier Stokes.

Our generic SDE, defined for ¢ € [0, T7:

t t t poo i
X = Xo+ / a(s, Xg)ds + / b(s, Xs)dWs + / / c(s, X, z)N(ds,dz), (1)
0 0 0 J—o0

e N(ds,dz) is a random Poisson measure with time-dependent compensator vg(dz)ds

e N(ds,dz) = N(ds,dz) — vs(dz)ds is the compensated Poisson measure.
After averaging on the gradient tensor A at the equilib-
rium regime, a Brownian SDE followed by the unfolded angle
0 = arctan(ps/p1) has been derived in [CBB22|. To take in
account the effects of the vertices as brutal variations of the
angular displacement, we added a jump term leading to

LP-wellposedness framework of [BP20] with time-Hoélder condition:

(H1) - Time-Ho6lder and Lipschitz: The drift and diffusion coefficients a(t, x) and b(¢, x)
are Holder w.r.t. ¢ and Lipschitz w.r.t. x. The jump coefficient ¢(t, x, z) verifies:
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0y = / a(fs)ds + / b(0s)dW + / / b(05)N (ds, dz),
0 0 0 J—o0

(H2) - Integrability: X, e LP(Q)) and (3)

2
/T (/OO F(t, z)|2yt(dz))p/ it s /T /OO F(t, 2)Pra(dz) < oo, where a(x) and b(x) being linear combining of cos(x) and
0 —00 0 J—o0 Anticydanic imp arss L] sin(x), vs(dz) = (81/2 ATz 71 Lej<r=y, T being
for F(-,-) = Le(-,-) and F(-, ) = ¢(-,0, ). the average lifetime of the vertices.

- General framework for the simulation of a Poisson integral
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The stochastic Poisson integral can be separated into large jumps and small jumps: / / F(s,z)N(ds,dz) = / / F(s,2z)N(ds,dz) + / / F(s,z)N(ds,dz).
0 Jooo 0 JR\B(e) 0 JB(e)

A. Numerically tractable representation of large jumps

Ne(T) [ N© (T') is a time-inomogeneous Poisson process with intensity A°(t) = fR\ B(e) ve(dz),
T o o . . :
/ / F(s,z)N(ds, dz) = Z F(T(4), Z€<j))]l{R\B(5)}<Z€(j>), where ¢ T=(7) = inf{t € |0,T], N°(t) = j} are the jump times of N¢,
0 JR\B(e) =1 Z5(j) = / zN(T(5),dz) — / zN(T(j — 1),dz) are the jump sizes of N°®.
\ R\B(e) R\B(e)
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The jump sizes Z¢(j) has conditional distribution P (Z°(j) € B | T°(j) = t) R\B())
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and can be simulated by inversion or rejection method for simple cases.

B. Gaussian approximation of the small jumps
We approximate the small jumps by a Gaussian r.v, making use of the following bound in LP-Wasserstein distance. The proof rely on a Berry-Essen type bound for the CLT obtained by Bobkov in [Bob18§].

Proposition: LP-Wasserstein approximation bound
Assume that F' satisfies (H2) for p > 2 and that for any s € |0,7], F(s, ) does not vanish on B(e) and has at most polynomial growth. Then, there exists a constant .A;, only depending on p such that
the following inequality holds for any r,t € [0, T):

t : t : P [ i | F (s, )P s(dz)ds
Wy (éfaw (/r /B(s) F(S,Z)N(dS,dZ)) , N (O,/T /B(g) |F(s,2)] Vs(dz)ds>> < A ff fB(€> (o2 Pon(d)ds — 0

- Numerical scheme

Let t; = 2% Define the numerical scheme X by yto = Xy and for each 7 € {1,...,n}:

_ _ T _ _ t; _ .
X, =X, +talti—1, Xy, )=+ b(ti—1, Xy, ) (Wi, = Wi, ) + B(Xy, ) + / / c(s, Xt,_y,2)N(ds, dz), (4)
n tz’—l R\B(é)

where the Gaussian r.v. B(X;, ) is the 20 component of the LP-Wasserstein optimal coupling between Zaw (ftt;_l fB(e) c(s,z, 2)N(ds, dz)) and NV (O, ftii_l fB(€> c(s,x, z)us(dz)ds>, taken at x = Xy, .

- Main theorem : Strong error convergence - Numerical simulations
Assume (H1), (H2), and that c(s, x, -) does not vanish on B(e). Let n(t) = t; for t € |t;,t; + 1).  Strong eror evoluion
Then: SDE : Xt:/o cos(Xs)ds—f—/O /Oosin(XS)zN(ds,dz)
1. There exists m(p,T) > 0 such that sup E[\Yn(w\p] < m(p,T) < oo,
tel0,T] '
_ 1
2. One has E {teSE(l)pT]Xn(t> — Xn(t)p} <Cpr (n(m)M + An,p(5)> , where C), 7 > 0 does not

depends on n, and the coefficient Ay, () is defined by

- B _
" S B le(s, Xy, 2) PP vs(dz)ds

An (6) — E E - trong error L8
7p tZ - 2 : trong error L 10
o1 | i B lels, Xa, o 2)Prs(dz)ds T T T e e e
- = Step size h
3. If in addition c¢(s, z, ) has at most polynomial growth, then € can be chosen small enough to get: Renormalized PDF
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