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We present two types of stochastic models for rigid fibres in turbulence. The first one is a Poisson-driven cadlag SDE that describes
the orientation of small rods in two-dimensional turbulence. The second one involves the derivation of an SDE model for long rigid
fibres in a turbulent fluid, where the turbulence is modeled by infinite-dimensional Kraichnan noise. For the jump model, we introduce
an appropriate numerical scheme and prove an optimal LP(€))-strong rate of convergence, as well as a weak rate of convergence. For
the three-dimensional Kraichnan model, we establish the well-posedness of the equation and prove its equivalence in law to a finite-  Preprint available

dimensional SDE. on ArXiv (jump model)
- A Poisson-driven model for orientation 1 Kraichnan S(P)DE model for long rigid fibres
We consider intertialless small rods in a turbulent flow with position S X (s,t) Starting point: slender body SPDL

equation dX (t)/dt = v(X(t),t), coupled with a unit orientation vector
p tollowing Jeffery’s equation :

dX(s) = Qup(Xy(s)) + (M(Xy) fi)(s)di

with ~-Holder singular Kraichnan noise
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After averaging on the gradient tensor A, Brownian SDE derived in neN

(CBB22| for the unfolded angle 6y = arctan(ps/p1).

M is a non-linear operator: M(X) = Is+0sX0sX ! and f; stochastic
forcing term to ensure the inextensibility constraint [0sX¢(s)| = 1.

Cyclonic jump area We transform 1t into a Poisson_ ngld ﬁbre assumption — Xt(S) = Xt —|_ S p(t) 1ead8 tO
SDE for 6. For t € [0,T], set

_ £/2
X, = / (X (s))ds oW

dfy = b(0)dt + o(0,-, 2)N(dt,dz), 0 )¢
1 (X&), Diffusion area f/ 2
NS N is a Poisson random measure dp(t) =— / s(a%n) (Xy(s)) — (p<t>T0§n) (X1(s)))p(t))ds 3Wt<n)
| with intensity v¢(dz)dt = E|[N(dt, dz)], & J—1)2

(2)

Theorem 1. For v € (0,1), there exists a unique strong solution

. , - . | | (X, p) in R3xS 1(R3) to the Stratonovich SDE with infinite-dimensional
€ (0,2], T vertices average lifetime, b, o (-, z) trigonometric functions. noise (2) with initial condition XO = 0 and p(0) € Sl(Rg). More-

over, (2) is equivalent in law to the standard Stratonovich SDE

m(dz) = (12 AT ™7 Ly apey,

Anticyclonic jump area ‘

- The c-EM scheme for Poisson SDEs

o > > ;
To approximate the Poisson-SDE satisfied by 6; we introduce, for a dX} = (c<1>(€)F5(p(t))Z] T 0(2)(€>F8(p(t>>w) 0Dy

number of time steps n € N\{0} and a threshold & > 0, the scheme - dp(t)’ = 0(3)(g)ra<p(t))ij OB/, i=1,...3andj=1,....9
deﬁnedby90290 and for 0 <7 <n—1:

~ py—1 15 a 3%9 7 , i d
. . o1 - | where ¢y (€) ~ €777, T%(p), I'(p) € R** and (B)1<j<g are i.t.
01, = (b — be)(0;,) At + j@el@ )28 + J(0;), t;=1iT/n (3) Brownian motions independent of everything else.

In this scheme,

o bo(x ft”l f_ —e|Ule o0) s 2)ri(dz)dt
— exact compensation for the of N

o 0-(x) = fti”l [£.0%(z, 2)n(dz)dt and [(§) iid~N(0,1)

— Gaussian substitute for small jumps of N

e J(x) compound Poisson process
—> of N exactly simulated

DNS of Navier-Stokes equation, image source from Jérémie Bec.

- Convergence results for the s<-EM scheme

- Numerical simulations
Theorem 2 (Strong error). Let p > 2. Under integrability condi-
tions on b, o and v, there exists a version 0% of the e-EM scheme

3) such that for e < n_<%+1l?) we have
(3)
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sup "915 <Cn 7
H 0<1<n Lr($2) |
where C' is a constant that does not depend on n and €. The rate E
n= /P s optimal for truncated subordinator Lévy noise. § —e— o —1, with substitute
—+— « = 1.5, with substitute
Theorem 3 (Weak error). Under integrability and reqularity con- —+— a =1, no substitute
ditions on b, o and v, for a smooth test function ¢, 0,7 7 o substiute
Elo(67)] - E[p(67)]| < C'(n~" + 57 B .
Qb T T — n & ) 205
with Blumenthal-Getoor index 8= inf sup / 2|1 (dz) < . ¢
a€(0,2] tejo, 1) JR

Numerical simulation of the weak error for the e-EM scheme associated to

dfy = —20,dt + sin(0y-)2N (dt, dz)
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