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We present two types of stochastic models for rigid fibres in turbulence. The first one is a Poisson-driven càdlàg SDE that describes
the orientation of small rods in two-dimensional turbulence. The second one involves the derivation of an SDE model for long rigid
fibres in a turbulent fluid, where the turbulence is modeled by infinite-dimensional Kraichnan noise. For the jump model, we introduce
an appropriate numerical scheme and prove an optimal Lp(Ω)-strong rate of convergence, as well as a weak rate of convergence. For
the three-dimensional Kraichnan model, we establish the well-posedness of the equation and prove its equivalence in law to a finite-
dimensional SDE.
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A Poisson-driven model for orientation

We consider intertialless small rods in a turbulent flow with position
equation dX(t)/dt = v(X(t), t), coupled with a unit orientation vector
p following Jeffery’s equation :

d

dt
p = Ap− (pTAp)p, (1)

After averaging on the gradient tensor A, Brownian SDE derived in
[CBB22] for the unfolded angle θt = arctan(p2/p1).

We transform it into a Poisson-
SDE for θ. For t ∈ [0, T ], set

dθt = b(θt)dt + σ(θt−, z)Ñ(dt, dz) ,

N is a Poisson random measure
with intensity νt(dz)dt = E[N(dt, dz)],

νt(dz) = (t1/2 ∧ T ∗)|z|−1−α 1{|z|<T ∗},

α ∈ (0, 2], T ∗ vertices average lifetime, b, σ(·, z) trigonometric functions.

Kraichnan S(P)DE model for long rigid fibres

DNS of Navier-Stokes equation, image source from Jérémie Bec.

Starting point: slender body SPDE

dXt(s) = ∂ut(Xt(s)) + (M(Xt)ft)(s)dt

with γ-Hölder singular Kraichnan noise

ut(x) =
∑
n∈N

W
(n)
t σ

(n)
γ (x)

M is a non-linear operator: M(X) = I3+∂sX∂sX
T and ft stochastic

forcing term to ensure the inextensibility constraint |∂sXt(s)| = 1.

Rigid fibre assumption −→ Xt(s) = X̄t + s p(t) leads to

dX̄t =
1
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Theorem 1. For γ ∈ (0, 1), there exists a unique strong solution
(X̄, p) in R3×S1(R3) to the Stratonovich SDE with infinite-dimensional

noise (2) with initial condition X̄0 = 0 and p(0) ∈ S1(R3). More-
over, (2) is equivalent in law to the standard Stratonovich SDE

dX̄i
t =

(
c(1)(ℓ)Γ

s(p(t))ij + c(2)(ℓ)Γ
s(p(t))ij

)
∂B

j
t

dp(t)i = c(3)(ℓ)Γ
a(p(t))ij ∂B

j
t , i = 1, . . . , 3 and j = 1, . . . , 9

where c(k)(ℓ) ≃ ℓγ−1, Γs(p), Γa(p) ∈ R3×9 and (Bj)1≤j≤9 are i.i.d
Brownian motions independent of everything else.

The ε-EM scheme for Poisson SDEs

To approximate the Poisson-SDE satisfied by θt we introduce, for a
number of time steps n ∈ N\{0} and a threshold ε > 0, the scheme θ

ε

defined by θ
ε
0 = θ0 and for 0 ≤ i ≤ n− 1:

θ
ε
ti+1

= (b− bε )(θ
ε
ti)∆t + σε(θ

ε
ti)

1
2ξi + J(θ

ε
ti) , ti = iT/n (3)

In this scheme,

• bε(x) =
∫ ti+1
ti

∫
(−∞,−ε]∪[ε,+∞) σ(x, z)νt(dz)dt

−→ exact compensation for the large jumps of N

• σε(x) =
∫ ti+1
ti

∫ ε
−ε σ

2(x, z)νt(dz)dt and (ξi) i.i.d ≃ N (0, 1)

−→ Gaussian substitute for small jumps of Ñ

• J(x) compound Poisson process

−→ large jumps of N exactly simulated

Convergence results for the ε-EM scheme

Theorem 2 (Strong error). Let p ≥ 2. Under integrability condi-

tions on b, σ and ν, there exists a version θ̂ε of the ε-EM scheme

(3) such that for ε ≤ n
−(12+

1
p) we have∥∥∥ sup

0≤i≤n
|θ̂εti − θti|

∥∥∥
Lp(Ω)

≤ Cn
−1

p,

where C is a constant that does not depend on n and ε. The rate
n−1/p is optimal for truncated subordinator Lévy noise.

Theorem 3 (Weak error). Under integrability and regularity con-
ditions on b, σ and ν, for a smooth test function ϕ,

|E[ϕ(θT )]− E[ϕ(θ̄εT )]| ≤ C ′(n−1 + ε3−β),

with Blumenthal-Getoor index β = inf
α∈(0,2]

sup
t∈[0,T ]

∫
R
|z|ανt(dz) < ∞.

Numerical simulations
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Numerical simulation of the weak error for the ε-EM scheme associated to
dθt = −2θtdt + sin(θt−)zÑ(dt, dz)
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