P. Maurer

ENS Rennes

Recasages: 236, 246, 267.

Référence : Stein & Shakarchi, Fourier Analysis.

Inégalité isopérimétrique

On commence par quelques rappels sur les courbes paramétrées.

On se donne a < b et c < d des réels.

Définition 1. 1. On appelle courbe paramétrée une application $\gamma: [a,b] \to \mathbb{R}^2$ vérifiant

- $\gamma \in \mathcal{C}^1([a,b])$.
- $\forall s \in [a, b] \quad \gamma'(s) \neq 0.$

On note alors $\Gamma := \operatorname{Im}(\gamma)$ et on dit que Γ est une courbe.

2. On dit qu'une courbe Γ est **simple** si elle ne s'intersecte pas, c'est-à-dire si

$$\forall (s_1, s_2) \in [a, b]^2 \quad \gamma(s_1) = \gamma(s_2) \implies s_1 = a \text{ et } s_2 = b$$

3. On dit qu'une courbe Γ est **fermée** si $\gamma(a) = \gamma(b)$.

Proposition 2. Soit φ un \mathcal{C}^1 -difféomorphisme φ : $[c,d] \to [a,b]$. Alors la courbe paramétrée η définie par $\eta(t) = \gamma(\varphi(t))$ a la même image que γ : on dit que η est une autre paramétrisation pour la courbe Γ .

Les conditions d'être fermée et d'être simple pour une courbe Γ ne dépendent pas de la paramétrisation choisie.

Définition 3. On dit que deux paramétrisation $\gamma:[a,b]\to\mathbb{R}^2$ et $\eta:[c,d]\to\mathbb{R}^2$ d'une courbe Γ sont équivalentes si

$$\forall t \in [c,d] \quad (\gamma^{-1} \circ \eta)'(t) > 0.$$

Ceci signifie que γ et η ont la même orientation sur la courbe Γ .

On dit que η renverse l'orientation de γ si

$$\forall t \in [c,d] \quad (\gamma^{-1} \circ \eta)'(t) < 0.$$

Définition 4. On appelle longueur d'une courbe Γ paramétrée par $\gamma = (x, y)$ le réel

$$\ell(\Gamma) := \int_{a}^{b} |\gamma'(s)| \, ds$$
$$= \int_{a}^{b} (x'(s)^{2} + y'(s)^{2})^{1/2} \, ds.$$

Proposition 5. La longueur de la courbe Γ est indépendante de la paramétrisation choisie.

Démonstration. Soit $\gamma: [a,b] \to \mathbb{R}^2$ et $\eta: [c,d] \to \mathbb{R}^2$ deux paramétrisations de Γ , et φ un \mathcal{C}^1 difféomorphisme tel que $\gamma(\varphi(t)) = \eta(t)$. Le changement de variable $t = \varphi(t)$ donne

$$\begin{split} \int_a^b |\gamma'(t)| dt &= \int_{\varphi(a)}^{\varphi(b)} |\gamma'(\varphi(t))| \cdot |\varphi'(t)| \, dt \\ &= \int_c^d |\eta'(t)| \, dt. \end{split}$$

Définition 6. On dit qu'une paramétrisation $\gamma:[a,b] \to \mathbb{R}^2$ d'une courbe Γ est une paramétrisation par longueur d'arc si $|\gamma'(s)| = 1$ pour tout $s \in [a,b]$.

Cela signifie en particulier que la longueur de Γ vaut exactement b-a. Aussi, à une translation près, une paramétrisation par longueur d'arc est définie sur $[0,\ell]$.

Théorème 7. Toute courbe fermée simple admet une paramétrisation par longueur d'arc.

Démonstration.

On se donne une courbe fermée simple Γ .

Etape 1 : On commence par démontrer qu'une paramétrisation $\gamma:[a,b]\to\mathbb{R}^2$ de Γ est une paramétrisation par longueur d'arc si et seulement si :

$$\forall s \in [a, b]$$
 $\int_a^s |\gamma'(t)| dt = s - a.$

Le sens direct est immédiat. Réciproquement, supposons que cette hypothèse soit vérifiée. Par contraposée, s'il existe $s_0 \in [a,b]$ tel que $\gamma'(s_0) \neq 1$ alors par continuité de γ' , on peut trouver $\varepsilon > 0$ tel que $\gamma'(s_0) > 1$ sur $[s_0 - \varepsilon, s_0 + \varepsilon]$, en supposant par symétrie que $\gamma'(s_0) > 1$. On a alors

$$\int_{a}^{s_{0}-\varepsilon}\left|\gamma'(t)\right|dt+\int_{s_{0}-\varepsilon}^{s_{0}+\varepsilon}\left|\gamma'(t)\right|dt=\int_{a}^{s_{0}}\left|\gamma'(t)\right|dt$$

Et donc

$$s_0 - \varepsilon - a + \int_{s_0 - \varepsilon}^{s_0 + \varepsilon} |\gamma'(t)| dt = s_0 - a$$

Donc

$$\int_{s_0-\varepsilon}^{s_0+\varepsilon} |\gamma'(t)| \, dt = \varepsilon.$$

Mais par hypothèse, $|\gamma'(t)| > 1$ sur $[s_0 + \varepsilon, s_0 - \varepsilon]$ donc $\int_{s_0 - \varepsilon}^{s_0 + \varepsilon} |\gamma'(t)| dt > (s_0 + \varepsilon) - (s_0 - \varepsilon) = 2\varepsilon$. On obtient une contradiction.

Etape 2 : On pose $h(s) = \int_a^s |\gamma'(t)| dt$ et $\eta = \gamma \circ h^{-1}$. L'application η est une paramétrisation de Γ puisque h est un \mathcal{C}^1 -difféomorphisme de [a,b] vers $[0,\ell(\Gamma)]$.

Alors pour $s \in [0, \ell(\Gamma)]$, on a

$$\begin{split} \int_0^s |\eta'(t)| \, dt &= \int_0^s |\gamma'(h^{-1}(t))| \cdot |h^{-1'}(t)| \, dt \\ &= \int_0^s |\gamma'(h^{-1}(t))| \cdot |h^{-1'}(t)| \, dt \\ &= \int_0^{h^{-1}(s)} |\gamma'(u)| \, du \\ &= h(h^{-1}(s)) \\ &= s. \end{split}$$

Ainsi, $\eta:[0,\ell(\Gamma)]\to\mathbb{R}^2$ définit une paramétrisation par longueur d'arc de Γ , et ceci conclut la preuve.

Dans la suite, on se donne une courbe fermée simple Γ et une paramétrisation $\gamma: [a,b] \to \mathbb{R}^2$ de Γ par longueur d'arc. On note $\gamma(t) = (x(t), y(t))$ pour $t \in [a,b]$.

Le théorème de Jordan affirme que Γ délimite un unique compact connexe K, de sorte que $\partial K = \Gamma$.

Lemme 8. En notant λ la mesure de Lebesgue sur \mathbb{R}^2 , on a

$$\lambda(K) = \frac{1}{2} \left| \int_{\Gamma} x \, dy - y \, dx \right|$$
$$= \frac{1}{2} \left| \int_{a}^{b} [x(s) \, y'(s) - y(s) \, x'(s)] \right| \, ds.$$

On dit que $\lambda(K)$ est l'aire de la région enfermée par la courbe Γ .

Démonstration. Par définition, on a

$$\lambda(K) = \int_{\mathbb{R}^2} \mathbf{1}_K(x, y) \, dx \, dy$$
$$= \int_K dx \, dy.$$

Posons $f(x,y) = -\frac{y}{2}$ et $g(x,y) = \frac{x}{2}$. La formule de Green-Riemann donne

$$\int_K \left(\frac{\partial g}{\partial x}(x,y) - \frac{\partial f}{\partial y}(x,y) \right) dx dy = \int_{\partial K} f(x) \, dx + g(y) \, dy.$$

On en déduit que

$$\int_{K} dx dy = \frac{1}{2} \int_{\partial K} x dy - y dx.$$

Par ailleurs, le fait que $\lambda(K) \geq 0$ impose $\int_{\partial K} x \, dy - y \, dx = \left| \int_{\partial K} x \, dy - y \, dx \right|$, ce qui conclut la preuve.

Théorème 9. (Inégalité isopérimétrique)

Soit Γ une courbe fermée simple sur \mathbb{R}^2 de longueur ℓ , et \mathcal{A} l'aire de la région enfermée par Γ . Alors on a

$$\mathcal{A} \le \frac{\ell^2}{4\pi},$$

avec égalité si et seulement si Γ est un cercle.

Démonstration.

Etape 1 : réduction du problème

Commençons par redimensionner le problème. Pour un facteur $\delta > 0$, l'application définie et à valeurs sur \mathbb{R}^2 qui envoie le point (x,y) sur $(\delta x,\delta y)$ dilate la longueur de Γ par δ et l'aire de la région enfermée par Γ par δ^2 . En prenant $\delta = \frac{2\pi}{\ell}$, il suffit donc de démontrer que si $\ell = 2\pi$, on a $\mathcal{A} \leq \pi$ avec égalité si et seulement si Γ est un cercle.

Etape 2 : démonstration de l'inégalité isopérimétrique

On se donne une paramétrisation par longueur d'arc $\gamma: [0, 2\pi] \to \mathbb{R}^2$ avec $\gamma(t) = (x(t), y(t))$: on a donc $x'(t)^2 + y'(t)^2 = 1$ pour tout $t \in [0, 2\pi]$. Ceci implique que

$$\frac{1}{2\pi} \int_0^{2\pi} x'(t)^2 + y'(t)^2 dt = 1$$

Comme la courbe Γ est fermée, on peut considérer x et y comme des fonctions 2π -périodiques, de classe \mathcal{C}^1 donc de carré intégrable sur $\mathbb{T} = \mathbb{R} / 2\pi \mathbb{Z}$.

Notons $(a_n)_{n\in\mathbb{Z}}$ et $(b_n)_{n\in\mathbb{Z}}$ les suites des coefficients de Fourier respectifs de x et y. On sait que les coefficients de Fourier de x' et de y' sont donnés par $in\ a_n$ et $in\ b_n$, pour $n\in\mathbb{Z}$.

La formule de Parseval donne alors

$$\sum_{n=-\infty}^{+\infty} |n|^2 (|a_n|^2 + |b_n|^2) = \frac{1}{2\pi} \int_0^{2\pi} x'(t)^2 + y'(t)^2 dt$$

$$= 1.$$

Par ailleurs, en notant $\langle \cdot, \cdot \rangle$ le produit scalaire hermitien sur $L^2(\mathbb{T})$ définit par

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x) \overline{g(x)} \, dx,$$

et $\|\cdot\|$ la norme dérivant de ce produit scalaire, on a l'identité valable pour tout $f,g\in L^2(\mathbb{T})$:

$$\langle f,g\rangle = \frac{1}{4} [\|f+g\|^2 - \|f-g\|^2 + i(\|f+ig\|^2 - \|f-ig\|^2)].$$

Ceci, avec l'inégalité de Parseval, permet d'affirmer que

$$\frac{1}{2\pi} \int_0^{2\pi} x(t) \, \overline{y(t)} \, dt = \sum_{n=-\infty}^{+\infty} a_n \, \overline{b_n}$$

Comme x et y sont à valeurs réelles, on en déduit que

$$\mathcal{A} = \frac{1}{2} \left| \int_{0}^{2\pi} x(s)y'(s) - y(s)x'(s) \, ds \right|$$

$$= \pi \left| \sum_{n=-\infty}^{+\infty} -a_{n}in \, \overline{b_{n}} + b_{n}in \, \overline{a_{n}} \right|$$

$$= \pi \left| \sum_{n=-\infty}^{+\infty} n \left(b_{n} \, \overline{a_{n}} - a_{n} \, \overline{b_{n}} \right) \right|.$$

Par inégalité triangulaire, on a donc

$$\mathcal{A} \leq \pi \sum_{n=-\infty}^{+\infty} |n| |a_n \overline{b_n} - \overline{a_n} b_n|.$$

Par ailleurs, pour $n \in \mathbb{Z}$, on a $|a_n \overline{b_n} - \overline{a_n} b_n| \le |a_n \overline{b_n}| + |\overline{a_n} b_n| = 2 |a_n| |b_n| \le |a_n|^2 + |b_n|^2$. (1) On en déduit que

$$A \leq \pi \sum_{n=-\infty}^{+\infty} |n| (|a_n|^2 + |b_n|^2).$$

Comme $|n| \le |n|^2$, on en déduit que

$$\mathcal{A} \leq \pi \sum_{n=-\infty}^{+\infty} |n|^2 (|a_n|^2 + |b_n|^2)$$
$$= \pi \quad \text{d'après ce qui précède.}$$

Etape 3 : cas d'égalité

Remarquons que si $n \ge 2$ on a $|n| < |n|^2$, donc pour que l'égalité ait lieu, il faut que les coefficients de Fourier a_n et b_n soient nuls dès que $n \ge 2$. On a dans ce cas

$$x(s) = a_{-1}e^{-is} + a_0 + a_1e^{is}$$
 et $y(s) = b_{-1}e^{-is} + b_0 + b_1e^{is}$.

D'après ce qui précède, on a $|1|^2 (|a_1|^2 + |b_1|^2) + |-1|^2 (|a_{-1}|^2 + |b_{-1}|^2) = 1$.

Comme x et y sont à valeurs réelles, leurs coefficients de Fourier vérifient $a_{-1} = \overline{a_1}$ et $b_{-1} = \overline{b_1}$: on en déduit que $2(|a_1|^2 + |b_1|^2) = 1$. Puisqu'il y a égalité dans l'inégalité (1), c'est donc que

$$2|a_1||b_1| = |a_1|^2 + |b_1|^2 = \frac{1}{2}$$
, donc $|a_1||b_1| = \frac{1}{4}$.

On est amené à résoudre le système suivant, pour $x, y \ge 0$:

$$\begin{cases} x+y=\frac{1}{2} \\ xy=\frac{1}{16} \end{cases} \iff \begin{cases} x=\frac{1}{2}-y \\ 16y^2-8y+1=0 \end{cases} \iff \begin{cases} x=\frac{1}{4} \\ y=\frac{1}{4} \end{cases}.$$

On en déduit, en posant $x = |a_1|^2$ et $y = |a_2|^2$, que $|a_1| = |b_1| = \frac{1}{2}$.

On écrit alors $a_1 = \frac{1}{2}e^{i\alpha}$ et $b_1 = \frac{1}{2}e^{i\beta}$ avec $\alpha, \beta \in [0, 2\pi[$. Le fait que $1 = 2 | a_1 \overline{b_1} - \overline{a_1} b_1 |$ implique que $|\sin(\alpha - \beta)| = 1$, d'où $\alpha - \beta = k \frac{\pi}{2}$, où k est un entier impair. On en déduit que pour tout $s \in [0, 2\pi]$, on a

$$x(s) = a_0 + \cos(\alpha + s)$$
 et $y(s) = b_0 \pm \sin(\alpha + s)$,

où le signe de y(s) dépend de la parité de $\frac{k-1}{2}$. Dans tous les cas, Γ est un cercle de centre (a_0,b_0) .

Réciproquement, si Γ est un cercle, l'égalité est immédiate.