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Brownian Motion and normal distribution
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Path of a Brownian Motion

Continuous stochastic process (Wt)t≥0 such that :

▶ W0 = 0.

▶ ∀s, t ∈ R+, Wt+s −Ws is independent from Ws.

▶ ∀s, t ∈ R+, Wt+s −Ws ∼ N(0, t).



SDEs driven by Brownian Motion

A stochastic process (Xt)t≥0 is solution of a stochastic differential equation (SDE) if

Xt =

∫ t

0

a(s,Xs)ds+

∫ t

0

b(s,Xs)dWs, (1)

where a, b : R+ × R → R are measurable applications.

Example

In finance, the Black-Scholes formula is obtained by modeling the
stock price by the equation

X0 = x0, Xt =

∫ t

0

rXsds+

∫ t

0

σXsdWs, (2)

where r is the interest rate and σ the volatility. This particular
SDE can be solved analytically :

Xt = x0e
(r−σ

2
)t+σWt (3)

The option premium is then given by E[h(XT )] where h is the
payoff and T is the maturity of the option.
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Euler-Maruyama scheme

▶ Quantities such as E[h(XT )] can be approximated by Monte-Carlo simulation :

E[h(XT )] ≃
1

N

N∑
i=0

h(Xi
T ) (4)

where (Xi
T )i≤n are independent copies of XT .

▶ For this simulation to be possible, we can discretize the process (Xt)t∈[0,T ] on
0 = t0 < ... < tn = T , ti = i/n, using the Euler-Maryuama scheme :

X̄n
ti+1

= X̄n
ti + a(ti, X̄

n
ti)h+ b(ti, X̄

n
ti)

√
hG, (5)

with h = T/n and G ∼ N(0, 1). This allows to generate XT ≃ X̄n
tn

▶ Results about convergence of this scheme are well known in the litterature :

E
[

sup
0≤i≤n

|Xti − X̄n
ti |

2

]
≤ CT

n
, E[f(XT )− f(X̄n

tn)] = O

(
1

n

)
(6)
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Lévy Processes
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Càdlàg stochastic process (Lt)t≥0 such that :

▶ ∀s, t ∈ R+, Lt+s − Ls is independent from Ws.

▶ ∀s, t ∈ R+, Lt+s − Ls ∼ Lt.

▶ Lévy-Kintchine formula : L is characterized in law by the triplet (µ, σ, ν), since

E[eixLt ] = exp

(
t

[
iµx− 1

2
σ2x2 +

∫
R∗

(1− eixy + ixy1{|y|<1})ν(dy)

])
.
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Example 1 : Compound Poisson Process
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Numerical simulation with λ = 4 and Y1 ∼ Exp(3)
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Path of a Compound Poisson Process

Xt =

Nt∑
i=1

Yi, with :

▶ (Nt)t∈R+ a Poisson process of intensity λ.

▶ (Yi)i∈N∗ i.i.d random variables with distribution π.

▶ (µ, σ, ν) = (0, 0, λπ).



Example 2 : Stable Process
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Numerical simulation with α = 1.5
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▶ (µ, σ, ν) = (0, 0, να), with να(dz) = |z|−1−αdz, α ∈ (0, 2].

▶ Xt+h −Xt ∼ h1/αX1.

▶ Easy to generate (Box-Muller like algorithm for X1) but infinite moments :
E[|X1|β ] = ∞ for β ≥ α. In particular, no variance for α < 2, hence not
convenient to model physical phenomenon.



Example 3 : Truncated Stable Process
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Numerical simulation with α = 0.5 and z∗ = 100
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▶ (µ, σ, ν) = (0, 0, να), with να(dz) = 1|z|≤z∗ |z|
−1−αdz.

▶ E[|Xt|2] = 2t
z2−α
∗
2−α

< ∞.

▶ No exact simulation algorithm known for X1 when α ∈ (1, 2].



Lévy-Itô representation

A Lévy process L with triplet (µ, σ, ν) can be written as

Lt = µt+ σWt + Js
t + J l

t , (7)

where Js and J l designates the "small jumps" and "large jumps" part of L, i.e

J l
t =

∫ t

0

∫
|z|>1

zN(ds, dz) ≃
N

λ(1,∞)
t∑
i=1

Y 1,∞
i .

Js
t =

∫ t

0

∫
|z|≤1

z(N(ds, dz)− ν(dz)ds) ≃ lim
δ→0


N

λ(δ,1)
t∑
i=1

Y δ,1
i − t

∫
|z|≤1

zν(dz)


with λ(a, b) =

∫
a≤|z|≤b

ν(dz) and (Y a,b
i )i∈N∗ i.i.d ∼ ν(dz)

λ(a,b)
.

▶ The jump measure ν verifies
∫ +∞
−∞ min(1, z2)ν(dz) < ∞.
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How to simulate a Lévy process ?
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We fix ε > 0 and consider a pure jump Lévy process L ∼ (0, 0, ν).

▶ The jumps larger than ε corresponds to the compound Poisson process

J l,ε
t =

∑N
λ(ε,∞)
t

j=1 Y ε,∞
j , that can be simulated exactly.

▶ The jumps smaller than ε are approximated by a Brownian motion with the
same variance Js,ε

t ≃ σεWt where σε =
√

E[|Js,ε
t |2].

▶ Then we set Lt = Js,ε
t + J l,ε

t .



SDEs driven by Lévy process and Approximated EM scheme
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▶ A stochastic process X is said to solve a SDE driven by a Lévy process if

Xt =

∫ t

0

a(Xs)ds+

∫ t

0

b(Xs)

∫ +∞

−∞

(
N(ds, dz)− ν(dz)1|z|≤1

)
ds.

▶ For ε > 0, we introduce the scheme X̄n,ε :

X̄n,ε
ti+1

= X̄n,ε
ti

+ a(X̄n,ε
ti

) + σε

√
(h)G+ b(X̄n,ε

ti
)

N
λε
ti+1∑

j=N
λε
ti

+1

Y ε
j ,

with σε =
√∫

|z|≤ε
|z|2ν(dz) and G ∼ N(0, 1).

▶ N. Fournier proved that the following L2 strong error upper bound holds :

E
[

sup
0≤i≤n

|Xti − X̄n,ε
ti

|2
]
≤ CT

(
1

n
+ n(ε)2

)
,



SDEs driven by Lévy noise and Approximated EM scheme
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▶ A stochastic process X is said to solve a SDE driven by a time inhomogeneous
Lévy noise if

Xt =

∫ t

0

a(s,Xs)ds+

∫ t

0

∫ +∞

−∞
b(s,Xs, z)

(
N(ds, dz)− νs(dz)1|z|≤1ds

)
.

▶ For ε > 0, we introduce the scheme X̄n,ε :

X̄n,ε
ti+1

= X̄n,ε
ti

+ a(ti, X̄
n,ε
ti

) + σε(ti, X̄
n,ε
ti

)G+

N
λε
ti+1∑

j=N
λε
ti

+1

b(ti, X̄
n,ε
ti

, Y (T ε
j ),

with σε(τ, θ) =
√∫ ti+1

ti

∫
|z|≤ε

|b(τ, θ, z)|2νs(dz), G ∼ N(0, 1),

T ε
j = inf{t > 0 : Nλε

t = j}, P(Y (T ε
j ) ∈ dx|T ε

j = t) = νt(dz)
λε

.

Theorem

If b satisfies |b(t, x, z)| ≤ b(ε) for t ∈ [0, T ], x ∈ R and z ∈ [−ε, ε], then

E
[

sup
0≤i≤n

|Xti − X̄n,ε
ti

|2
]
≤ CT

(
1

n
+ nb(ε)2

)
.



Application to the orientation of rods in turbulence
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Vorticity field ω of the turbulent flow for two different values of
the shear σ∗. Blue corresponds to positive values (cyclonic
eddies) and red to negative values (anticyclonic). The
orientation of the rods are shown as black segments.

Figures provided courtesy of [Campana et al., 2022]

▶ We consider intertialless rods in a turbulent flow with position equation
dX(t)/dt = v(X(t), t), coupled with a unit orientation vector p following
Jeffery’s equation :

d

dt
p = Ap− (pTAp)p. (8)

▶ After approximations on the gradient tensor A at the equilibrium regime, the
SDE followed by the unfolded angle θt = arctan(p2/p1) is derived

θt = θ0 +

∫ t

0

a(θs)ds+

∫ t

0

b(θs)dWs, (9)

with a(x) and b(x) being linear combining of cos(x) and sin(x).
Lorenzo Campana, Mireille Bossy, and Jérémie Bec.

Stochastic model for the alignment and tumbling of rigid fibres in two-dimensional turbulent shear flow, 2022.



The Levy noise model

This Gaussian model however fail to reproduce some of the characteristics present in the direct
numerical simulation (DNS).

▶ The PDF of θ obtained by the DNS shows the presence of heavy tails at small times.

▶ The process θ also seem to have two regimes, being super-diffusive (i.e E[|θt|2] ∼ tα with
α > 1) at small times, and eventually converging to a diffusive regime (i.e E[|θt|2] ∼ t).

To enhance the diffusive model, we choose to replace the Brownian motion in the SDE by a time
inhomogeneous truncated stable process Lt, with Lévy measure

νs(dz)ds =
{√

s1s<T∗ +
√
T∗1s≥T∗

}
|z|−1−α1|z|<z∗ . (10)

Hence, one can compute

E[|Lt|2] =

{
2 t3/2

3/2

z2−α
∗
2−α

if t ≤ T∗

E[|LT∗ |2] + 2(t− T∗)
z2−α
∗
2−α

if t ≥ T∗.
(11)
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Comparison of the models
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▶ First results in the shear case are promising, though more calibration of
the parameters is required.

▶ In the close future, we plan to extend our results to the multi-dimensional
case. As an application, we could build a 3D Lévy noise model for non
spherical particles in turbulence. However, the physics of the 3D
turbulence is much more complex.

▶ Another important part of my PhD will be about modelling deformable
fibers in turbulence, involving SPDEs analysis, and modelling
intermittence with Stochastic Volterra Equations.
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Thank you for your attention !


