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Brownian Motion and normal distribution

Normal distribution (log scale)

Path of a Brownian Motion

Continuous stochastic process (WW;):>o such that :
> Wy =0.

> Vs, t € Ry, Wips — Wy is independent from W.

> Vs,t c ]R+, Wt+s — Ws ~ ./V(O7 t)
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SDEs driven by Brownian Motion

A stochastic process (X¢)¢>o is solution of a stochastic differential equation (SDE) if

t t
X = / a(s, Xs)ds + / b(s, Xs)dWs,
0 0
where a,b : Ry X R — R are measurable applications.

Example

In finance, the Black-Scholes formula is obtained by modeling the
stock price by the equation

t t
Xo=x9, Xi= / rXsds +/ o XsdWs, 2)
0 0

where 7 is the interest rate and o the volatility. This particular
SDE can be solved analytically : 1 ¥ g ‘V'

X, = zoe" )M (3)

The option premium is then given by E[h(X )] where h is the
payoff and T is the maturity of the option.
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Euler-Maruyama scheme

> Quantities such as E[h(X7)] can be approximated by Monte-Carlo simulation :
E[h(X7)] ~ — 3 h(X7
[(T)]—N;(T) )
where (X7);<,, are independent copies of Xr.

» For this simulation to be possible, we can discretize the process (Xt)tE[O,T] on
0=ty <..<ty,="T,t =1i/n,using the Euler-Maryuama scheme :

X, = X0 +a(ti, X[k +b(t;, X{)VAG, (5)
with b = T'/n and G ~ W (0, 1). This allows to generate X7 ~ X"
» Results about convergence of this scheme are well known in the litterature :
vn |2 Cr on 1
E | sup |Xti - Xt,;' < o E[f(XT) - f(th)] =0\~ (6)

0<i<n n
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Lévy Processes

Cadlag stochastic process (L;):>o such that :
» Vs, t € Ry, Liys — Ls is independent from W.
> Vst € Ry, Liys — Ls ~ Ly.
» Lévy-Kintchine formula : L is characterized in law by the triplet (11, o, v/), since

E[e"""*] = exp <t [i,ux — %a2x2 —|—/

*

(1—e™ + iﬂfyl{\ym})l/(dy)D :

a-Stable symmetric distribution
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Example 1 : Compound Poisson Process

Numerical simulation with A = 4 and Y7 ~ Ezp(3)

Compound Poisson Process Path of a Compound Poisson Process
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Ny
X = ZY“ with :
i=1

> (Nt)teR+ a Poisson process of intensity A.
» (Y;)ien= i.i.d random variables with distribution .
> (M’ g, V) = (Oa 0, >‘7T)'
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Example 2 : Stable Process

Numerical simulation with « = 1.5

Stable Process Path of a Stable Process

=10

i
X(t)

104

> (u,0,v) = (0,0,v4), with e (dz) = |2| 7'~ %dz, a € (0,2].
> X, — Xe ~ hYOX.
» Easy to generate (Box-Muller like algorithm for X1) but infinite moments :

E[|X1]?] = oo for B > a. In particular, no variance for a < 2, hence not
convenient to model physical phenomenon.
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Example 3 : Truncated Stable Process

Numerical simulation with &« = 0.5 and z,. = 100

Truncated Stable Process Path of a Truncated Stable Process
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> (u,0,v) = (0,0,va), with va (dz) = 1<, |2| '~ ¥d.

—a

2 22
> E[|Xe[7] = 2t5=
> No exact simulation algorithm known for X; when a € (1, 2].

< 00.

«
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Lévy-1t6 representation

A Lévy process L with triplet (1, o, ) can be written as
Ly = put + oW, + JS + J, 7)

where J*° and J' designates the "small jumps” and "large jumps” part of L, i.e

,\(1 o)

J = // N(ds,dz) Z Y1°°
|z\>1
N

t
JP = / / z(N(ds,dz) — v(dz)ds) ~ lim Z Yyt~ t/ zv(dz)
0 l2]<1 §—0 ‘

i=1 lz|<1

with Aa, b) = [, _ | o, ¥(d2) and (V;"")sen iid ~ £

> The jump measure v verifies [ min(1, 2?)v(dz) < oo
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How to simulate a Lévy process ?

We fix € > 0 and consider a pure jump Lévy process L ~ (0,0, v).

» The jumps larger than e corresponds to the compound Poisson process
A(e, 00
Nt

L,
J S = Zj:l
» The jumps smaller than € are approximated by a Brownian motion with the
same variance J;*° ~ o.W; where 0. = \/E[|J;°|?].

> Thenwe set L; = J;° + J}°.

)
Y; >, that can be simulated exactly.

N
A (e

=1

I o W,
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SDEs driven by Lévy process and Approximated EM scheme

> A stochastic process X is said to solve a SDE driven by a Lévy process if

X, :/Ota(Xs)ds—i—/ot b(Xs)/+°° (N(ds, dz) — v(d=)1). 1) ds.

—0o0

> For e > 0, we introduce the scheme X™° :

AE
tit1
XPf = X%+ a(X0%) + oo /(WG + (X5 > Y,
j=Nt>‘1F+1

with o = le\<s |2|?v(dz) and G ~ N (0,1).
» N. Fournier proved that the following L? strong error upper bound holds :

E [ sup | Xy, 7)2::,5'2} <Cr (% +n(6)2) ,

0<i<n

10/ 15



SDEs driven by Lévy noise and Approximated EM scheme

» A stochastic process X is said to solve a SDE driven by a time inhomogeneous
Lévy noise if

t t +oo
X = / a(s, Xs)ds —|—/ / b(s, X., z) (N(ds,dz) — vi(dz)1 . <1ds) .
0 0 —oo

> For e > 0, we introduce the scheme X ™* :

Ae
tit1
XPe = X0 a(ts, X[%) oo (t, XPO)G+ D blts, X107, V(T5),
J=NQE+1

with o (7, 0) \/f i f o< [0(7, 0, 2)[Pvs (dz), G ~ N(0,1),
T5 = inf{t > 0: N)* = j}, B(Y/(TF) € da| T} =t) = 222,

Theorem

If b satisfies |b(t, x, z)| < b(e) fort € [0,T], z € R and z € [—¢,¢], then

_ 1 _
E { sup | Xy, — XZ:’€|2] <Cr (f + nb(6)2> .
0<i<n n
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Application to the orientation of rods in turbulence

Vorticity field w of the turbulent flow for two different values of
the shear o *. Blue corresponds to positive values (cyclonic
eddies) and red to negative values (anticyclonic). The
orientation of the rods are shown as black segments.

Figures provided courtesy of [Campana et al., 2022]

» We consider intertialless rods in a turbulent flow with position equation
dX(t)/dt = v(X(t),t), coupled with a unit orientation vector p following
Jeffery’s equation :

d
P =hp— (»" Ap)p. 8)

> After approximations on the gradient tensor A at the equilibrium regime, the
SDE followed by the unfolded angle 6; = arctan(pz/p1) is derived

t t
0,5 = 00 + / a(@s)ds +/ b(es)dWs> (9)
0 0

with a(z) and b(x) being linear combining of cos(z) and sin(z).
Lorenzo Campana, Mireille Bossy, and Jérémie Bec.
Stochastic model for the alignment and tumbling of rigid fibres in two-dimensional turbulent shear flow, 2022.
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The Levy noise model

This Gaussian model however fail to reproduce some of the characteristics present in the direct
numerical simulation (DNS).

» The PDF of § obtained by the DNS shows the presence of heavy tails at small times.

> The process 6 also seem to have two regimes, being super-diffusive (i.e E[|0;]] ~ t* with
a > 1) at small times, and eventually converging to a diffusive regime (i.e E[|0t|2] ~ ).

To enhance the diffusive model, we choose to replace the Brownian motion in the SDE by a time
inhomogeneous truncated stable process L:, with Lévy measure

vs(dz)ds = {\/§13<T* + VT*]-SZT*} i TEP (10)

Hence, one can compute

t3/2 2370‘ .
E[‘Lt|2] _ 3/2 2—a . ift S T (11)
E[|Lr, |*] 4+ 2(t — Tv) 32— ift > T..
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Comparison of the models

PDF - Gaussian Model (Isotropic) Renormalized PDF
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> First results in the shear case are promising, though more calibration of
the parameters is required.

» In the close future, we plan to extend our results to the multi-dimensional
case. As an application, we could build a 3D Lévy noise model for non
spherical particles in turbulence. However, the physics of the 3D
turbulence is much more complex.

» Another important part of my PhD will be about modelling deformable
fibers in turbulence, involving SPDEs analysis, and modelling
intermittence with Stochastic Volterra Equations.

Renormal lized PDF
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(a). PDF - DNS (Shear) (b). PDF - Lévy Model (Shear, first result)

Thank you for your attention !
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