P. Maurer ENS Rennes

Leçon 141 : Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications.

Devs:

- Critère d'Eisenstein
- Irréductibilité des polynômes cyclotomiques

Références:

- 1. Gozard, Théorie de Galois
- 2. Perrin, Algèbre

Dans tout le plan, A est un anneau commutatif unitaire, et K est un corps. On note A^{\times} les éléments inversibles pour la multiplication de A.

1 Polynômes irréductibles

1.1 Définitions et propriétés

Définition 1. Un élément $p \in A$ est dit irréductible si p n'est ni nul ni inversible et si $p|ab \Longrightarrow p|a$ ou p|b pour tout $a,b \in A$.

Proposition 2. On a $A[X]^{\times} = A^{\times}$

Proposition 3. Dans K[X]:

- 1. Tout polynôme de degré 1 est irréductible.
- 2. Tout polynôme irréductible de degré > 1 n'a pas de racines dans K.

Remarque 4. La réciproque de 2. est fausse en général, par exemple considérer $(X^2+1)^2$ dans $\mathbb{R}[X]$. En revanche, les polynômes de degrés 2 et 3 irréductibles sont exactement ceux qui n'ont pas de racine.

Remarque 5. Soit k un sous-corps de K, et $P \in k[X]$.

Si P est irréductible sur K[X], il est a fortiori irréductible sur k[X]. En revnanche, l'inverse n'est pas toujours vrai : X^2+1 est irréductible sur $\mathbb{R}[X]$ mais pas sur $\mathbb{C}[X]$.

Théorème 6. A[X] est principal si et seulement si il est euclidien, si et seulement si A est un corps.

Théorème 7. Pour $P \in K[X]$, P est irréductible si et seulement si K[X]/(P) est un corps.

Exemple 8. Le théorème est faux sur A[X]. Par exemple, $X^2 + 1$ est irréductible sur $\mathbb{Z}[X]$ mais $\mathbb{Z}[i] = \mathbb{Z}[X]/(X^2 + 1)$ n'est pas un corps.

1.2 Factorialité

Définition 9. Soit A un anneau intègre. On dit que A est factoriel si tout élément $a \in A$ peut s'écrire, de manière unique à permutation de facteurs près, de la forme :

$$a = u p_1^{\alpha_1} \cdots p_\ell^{\alpha_\ell}$$

 $O\dot{u}\ u \in A^{\times}\ et\ p_1, \ldots, p_{\ell} \in A\ sont\ premiers\ et\ \alpha_1, \ldots, \alpha_{\ell} \in \mathbb{N}.$

Exemple 10. Un anneau principal est factoriel.

Exemple 11. \mathbb{Z} est factoriel. $\mathbb{Z}[i\sqrt{5}]$ n'est pas factoriel car $3 \times 3 = (2+i\sqrt{5})(2-i\sqrt{5})$.

Définition 12. Pour $P \in A[X]$ non nul, on appelle contenu de P, noté c(P) le plus grand diviseur commun de ses coefficients. L'élément c(P) est défini modulo A^{\times} (à un inversible près).

Un polynôme est dit primitif si c(P) = 1.

Lemme 13. (Gauss)

On a c(PQ) = c(P) c(Q) modulo A^{\times} .

Théorème 14. Si A est factoriel, A[X] est factoriel.

Développement 1 :

Théorème 15. (Critère d'Eisenstein)

Soit A un anneau factoriel. On note K = Frac(A) le corps des fractions de A. Les polynômes de A[X] irréductibles sont :

- i. Les constantes $p \in A$ irréductibles dans A
- ii. Les polynômes de degré plus grand que 1 primitifs et irréductibles dans K[X]

Soit $P = \sum_{i=1}^{n} a_i X^i \in A[X]$, et p un élément irréductible de A tel que $p \nmid a_n$, $p^2 \nmid a_0$ et $p \mid a_i$ pour tout $i \in [0, n-1]$. Alors P est irréductible dans K[X].

Exemple 16. Le polynôme $\Phi_{p,\mathbb{Q}}(X) = \sum_{i=0}^{p-1} X^i$ est irréductible sur \mathbb{Q} pour p premier.

Théorème 17. Soit A un anneau factoriel, $K = \operatorname{Frac}(A)$. Soit $P = \sum_{i=1}^{n} a_i X^i \in A[X]$.

2 Section 2

Soit I un idéal premier de A, B=A/I l'anneau quotient (qui est donc intègre), $L=\operatorname{Frac}(B)$ le corps des fractions de B. On suppose que $a_n\notin I$. Si le réduit $\hat{\psi}(P)$ de P modulo I est irréductible dans L[X], alors P est irréductible dans K[X].

Exemple 18. On peut appliquer ce théorème avec $A = \mathbb{Z}$ et I = (p) où p est un nombre premier. Dans ce cas, $B = \mathbb{F}_p = L$.

Par exemple, $P = X^3 - 127X^2 + 3608X + 19$ est irréductible dans $\mathbb{Q}[X]$. En effet, il est irréductible sur $\mathbb{F}_2[X]$ car son réduit modulo deux est $X^3 - X^2 + 1$, qui n'a pas de racine dans \mathbb{F}_2 .

2 Extensions de corps. Corps de décomposition.

K et L désignent des corps.

2.1 Extensions de corps et éléments algébriques.

Définition 19. On dit que L est une extension de K si K est un sous-corps de L, i.e s'il existe un morphisme de corps injectif $\rho: K \to L$. Dans ce cas, on peut voir L comme K-espace vectoriel. On note [L:K] la dimension de L en tant que K-ev, si cette dernière est finie.

Théorème 20. (Base télescopique)

Soit $K \subset L \subset M$ des corps, $(e_i)_{i \in I}$ une base de L sur K, $(f_j)_{j \in J}$ une base de M sur L. Alors $(e_i f_j)_{i \in I, j \in J}$ est une base de M sur K. En particulier, [M:K] = [M:L][L:K].

Définition 21. Soit K un corps et L une extension de K. Soit $\varphi: K[T] \to L$ l'homomorphisme défini par $\varphi_{|K} = \mathrm{id}_K$ et $\varphi(T) = \alpha$.

Si φ est injectif, on dit que α est transcendant sur K. Sinon, on dit que α est algébrique sur K, et l'idéal $I=\operatorname{Ker} \varphi$ étant principal, on a I=(P) avec P irréductible (que l'on peut supposer unitaire). Le polynôme P est, par définition, le polynôme minimal de α sur K, et on le note μ_{α} .

Exemple 22. $\sqrt{2}$ et *i* sont algébriques sur \mathbb{Q} , mais pas π ni *e*.

Remarque 23. Le polynôme minimal d'un élément α algébrique sur K est l'unique polynôme unitaire irréductible de K[X] qui annule α .

Exemple 24. X^2+1 est le polynôme minimal de i sur \mathbb{Q} . X-i est le polynôme minimal de i sur \mathbb{C} .

Théorème 25. Soit $K \subset L$ une extension et $\alpha \in L$. Les propriétés suivantes sont équivalentes :

• α est algébrique sur K

- On $a K[\alpha] = K(\alpha)$
- On $a \dim_K K[\alpha] < \infty$

Dans ce cas, on a $deg(\mu_{\alpha}) = [K(\alpha): K]$.

2.2 Corps de rupture

Définition 26. Soit $P \in K[X]$ un polynôme irréductible dans K[X]. On dit que L est un corps de rupture de P si et seulement si L est une extension monogène de K engendrée par K et une racine, notée α , de P.

Remarque 27. L est alors une extension de K de degré $\deg(P)$.

Exemple 28. Si deg(P) = 1, K est un corps de rupture de P.

Théorème 29. Soit $P \in K[X]$ irréductible.

- 1. Il existe un corps de rupture de P.
- Si L = K(α) et L' = K(β) sont deux corps de rupture de P, alors L et L' sont K-isomorphes : il existe un unique K-isomorphisme t: L → L' tel que t(α) = β.

Exemple 30. \mathbb{C} s'obtient comme corps de rupture de $X^2 + 1 \in \mathbb{R}[X]$.

Exemple 31. Le corps de rupture de $X^2 + X + 1 \in \mathbb{F}_2[X]$ donne un corps à 4 éléments

Corollaire 32. Si $P \in K[X]$ est de degré plus grand que 1, il existe une extension L de K dans laquelle P possède au moins une racine, et cette extension est finie.

Proposition 33. Soit $P \in K[X]$ de degré n. P est irréductible sur K si et seulement si P n'a pas de racine dans les extensions de K de degré $\leq \frac{n}{2}$.

Remarque 34. On retrouve l'irréductibilité des polynômes de degré 2 et 3.

Théorème 35. Soit $P \in K[X]$ un polynôme irréductible de degré n, et L une extension de degré m avec $n \land m = 1$. Alors P est encore irréductible sur L.

2.3 Corps de décomposition

Définition 36. Soit L une extension de K. Soit $P \in K[X]$, avec $\deg(P) = n \in \mathbb{N}^*$. On dit que L est un corps de décomposition de P sur K si P s'écrit $P(X) = a(X - \alpha_1) \cdots (X - \alpha_n)$ avec $a, \alpha_1, \ldots, \alpha_n \in L$ et si $L = K(\alpha_1, \ldots, \alpha_n)$.

Remarque 37. Dans ce cas, L est une extension finie de K.

Exemple 38. K est un corps de décomposition de tout polynôme de degré 1.

Cyclotomie 3

Exemple 39. $\mathbb{C} = \mathbb{R}(i)$ est un corps de décomposition de $X^2 + 1$ sur \mathbb{R} , et $\mathbb{Q}(\sqrt{2})$ est un corps de décomposition de $X^2 - 2$ sur \mathbb{Q} .

 $\mathbb{Q}(\sqrt[3]{2})$ est un corps de rupture de $\sqrt[3]{2}$ sur \mathbb{Q} mais pas un corps de décomposition.

Théorème 40. *Soit* $P \in K[X]$ *de degré* n > 1.

- 1. Il existe un corps de décomposition L de P sur K, avec $[L:K] \leq n!$
- 2. Si L et L' sont deux corps de décomposition de P sur K, alors il existe un K-isomorphisme de L dans L'.

Théorème 41. (Théorème de l'élément primitif)

Sur un corps de caractéristique nulle, toute extension finie est monogène.

Théorème 42. (Cas des corps finis)

Soit p un nombre premier et $n \in \mathbb{N}^*$. On pose $q = p^n$

- 1. Il existe un corps K à q éléments, c'est le corps de décomposition du polynôme $X^q X$ sur $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$.
- 2. En particulier, K est unique à isomorphisme près. On le note \mathbb{F}_q .

2.4 Clotûre algébrique

Définition 43. Les conditions suivantes sont équivalentes :

- 1. Tout polynôme de degré ≥ 1 de K[X] est scindé sur K
- 2. Tout polynôme de degré ≥ 1 de K[X] admet au moins une racine sur K
- 3. Les seuls polynômes irréductibles de K[X] sont de degré 1
- 4. Toute extension algébrique de K est identique à K lui-même.

On dit que K est algébriquement clos.

Exemple 44. $\mathbb Q$ n'est pas algébriquement clos, car X^2-2 et X^3-2 n'ont pas de racines dans $\mathbb Q$.

 \mathbb{R} n'est pas algébriquement clos, car X^2+1 et X^2+X+1 n'ont pas de racine dans \mathbb{R} .

Proposition 45. Tout corps algébriquement clos est infini.

Théorème 46. (D'Alembert-Gauss)

 \mathbb{C} est algébriquement clos.

Définition 47. Soit K un corps, L une extension de K. On dit que L est une clotûre algébrique de K si L est algébrique sur K et si L est algébriquement clos.

Exemple 48. \mathbb{C} est une clotûre algébrique de \mathbb{R} .

Théorème 49. Si K est un corps, alors $\overline{K} = \{ \alpha \in K : \alpha \text{ algébrique sur } K \}$ est une clôture algébrique de K.

Exemple 50. $\overline{\mathbb{Q}}$ est une clotûre algébrique de \mathbb{Q} .

Théorème 51. [ADMIS] (Steinitz)

Tout corps commutatif K admet une clôture algébrique.

3 Cyclotomie

Définition 52. Soit $m \in \mathbb{N}^*$. On considère l'ensemble $\mathbb{U}_m = \{z \in \mathbb{C} : z^m = 1\}$ des racines $m^{\text{èmes}}$ de l'unité. \mathbb{U}_m est un groupe cyclique, isomorphe à $\mathbb{Z}/m\mathbb{Z}$ via $e^{\frac{2i\pi k}{n}} \mapsto \bar{k}$.

On appelle racine primitive $m^{\text{ème}}$ de l'unité tout générateur de \mathbb{U}_m , c'est-à-dire tout élément $\zeta \in \mathbb{U}_m$ tel que $\zeta^d \neq 1$ pour tout diviseur d strict de m. On note $\mu_m^*(\mathbb{C})$ l'ensemble des racines primitives $m^{\text{èmes}}$ de l'unité.

Proposition 53. $\mu_m^*(\mathbb{C})$ a pour cardinal $\varphi(m)$.

Exemple 54. On a $\mu_1^*(\mathbb{C}) = \{1\}$, $\mu_2^*(\mathbb{C}) = \{-1\}$, $\mu_3^*(\mathbb{C}) = \{j, \bar{j}\}$ et $\mu_4^*(\mathbb{C}) = \{i, -i\}$.

Définition 55. Soit $m \in \mathbb{N}^*$. On appelle $m^{\text{\tiny dme}}$ polynôme cyclotomique le polynôme :

$$\Phi_{m,\mathbb{Q}}(X) = \prod_{\zeta \in \mu_n^*(\mathbb{C})} (X - \zeta)$$

Proposition 56. On a $X^m - 1 = \prod_{d \mid m} \Phi_{d,\mathbb{Q}}(X)$.

Remarque 57. Cette formule permet de calculer $\Phi_{m,\mathbb{Q}}$ par récurrence.

Exemple 58. On a $\Phi_{1,\mathbb{Q}}(X) = X - 1$, $\Phi_{2,\mathbb{Q}}(X) = X + 1$, $\Phi_{4,\mathbb{Q}}(X) = X^2 + 1$, $\Phi_{8,\mathbb{Q}}(X) = X^4 + 1$.

On a $\Phi_{p,\mathbb{Q}}(X) = \frac{X^p - 1}{X - 1} = 1 + X + \dots + X^{p-1}$ pour tout p premier.

Proposition 59. Pour tout $n \in \mathbb{N}^*$, $\Phi_{n,\mathbb{Q}}(X) \in \mathbb{Z}[X]$.

Développement 2 :

Théorème 60.

Pour tout $n \in \mathbb{N}^*$, $\Phi_{n,\mathbb{Q}}(X)$ est irréductible dans $\mathbb{Q}[X]$

Théorème 61. (Wedderburn)

Tout corps fini est commutatif.