P. Maurer ENS Rennes

Leçon 126. Exemples d'équations en arithmétique.

Devs:

- Théorème des deux carrés
- Loi de réciprocité quadratique

Références:

- 1. Objectif Agrégation
- 2. Gozard, Théorie de Galois
- 3. Perrin, Cours d'algèbre
- 4. Combes, Algèbre et géométrie
- 5. Gourdon, Algèbre

1 Equations diophantiennes linéaires

1.1 Equations diophantiennes linéaires à deux variables

Proposition 1. Soit $a, b \in \mathbb{Z}$. L'équation ax = b admet des solutions si et seulement si $a \mid b$, et dans ce cas, l'unique solution est donnée par $x = \frac{b}{a}$.

Théorème 2. (Bézout). Soit $a, b \in \mathbb{Z}$ premiers entre eux. Il existe un couple $(u, v) \in \mathbb{Z}^2$ tels que au + bv = 1.

Corollaire 3. Soit $a, b \ge 2$ deux entiers premiers entre eux. L'équation ua - vb = 1 admet pour uniques solutions les couples (u + kb, v + ka) où le couple (u, v) est donné par le théorème de Bézout et k est un entier relatif.

Remarque 4. En pratique, on obtient u et v grâce à l'algorithme d'Euclide.

Exemple 5. L'équation 47u + 111v = 1 a pour solutions (26 + 111k, -11 + 47k) pour $k \in \mathbb{Z}$.

1.2 Méthode générale pour les équations linéaires à n variables

Cadre 6. Soit $n, m \in \mathbb{N}$, $A \in \mathcal{M}_{m,n}(\mathbb{Z})$ et $B \in \mathcal{M}_{m,1}(\mathbb{Z})$. On souhaite résoudre l'équation AX = B.

Proposition 7. On suppose que $A = \operatorname{diag}(d_1, \ldots, d_r, 0, \ldots, 0)$ avec $d_1, \ldots, d_r \in \mathbb{Z}$. Alors l'équation AX = B a des solutions si et seulement si $d_i|b_i$ pour tout $i \in [\![1,r]\!]$ et $b_{r+1} = \cdots = b_m = 0$, et dans ce cas, les solutions sont les n-uplets $\left(\frac{b_1}{d_1}, \ldots, \frac{b_r}{d_r}, k_{r+1}, \ldots, k_n\right)$ avec $k_{r+1}, \ldots, k_n \in \mathbb{Z}$.

Théorème 8. (Invariants de similitude). Soit $A \in \mathcal{M}_{m,n}(\mathbb{Z})$. Il existe une famille $(d_1,...,d_r)$ d'entiers non nuls tels que $d_1|\cdots|d_r$ telle que A soit équivalente à diag $(d_1,...,d_r,0,...,0)$.

Remarque 9. On obtient les invariants de similitude de A de manière algorithmique, sur une méthode similaire au pivot de Gauss, en utilisant des divisions euclidiennes successives.

Proposition 10. Soit $P \in GL_m(\mathbb{Z})$ et $Q \in GL_n(\mathbb{Z})$ tels que PAQ = D, où D est de la forme du théorème 8. Alors X est solution de AX = B si et seulement si $Q^{-1}X$ est solution de $DQ^{-1}X = PB$.

Remarque 11. Ceci donne une méthode de résolution pour les équations diophantiennes linéaires à n variables.

2 Equations modulaires

2.1 Système de congruences

Théorème 12. (Théorème Chinois). Soient $n, m \in \mathbb{N}$ deux entiers non nuls premiers entre eux. Alors on a l'isomorphisme d'anneau $f: (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z}) \simeq \mathbb{Z}/(nm)\mathbb{Z}$.

Remarque 13. La surjectivité de l'application f du théorème 12 prouve que si $n \wedge m = 1$, alors $\forall a,b \in \mathbb{Z} \quad \exists x \in \mathbb{Z} \quad x \equiv a[m]$ et $x \equiv b[n]$. Dans la pratique, on obtient un tel x grâce à l'algorithme d'Euclide, en cherchant u et v tels que um + vn = 1 puis en posant par exemple x = a + um(b-a).

Remarque 14. Par récurrence, on peut généraliser le théorème Chinois : si $n_1, ..., n_p$ sont premiers entre eux deux à deux et $n = n_1 \cdots n_p$, alors $(\mathbb{Z}/n_1\mathbb{Z}) \times \cdots \times (\mathbb{Z}/n_p\mathbb{Z}) \simeq \mathbb{Z}/n\mathbb{Z}$.

Exemple 15. Le système $x \equiv 2[4], x \equiv 3[5], x \equiv 1[9]$ a pour solutions x = 118 + 180k, avec $k \in \mathbb{Z}$.

2.2 Equations polynomiales et réduction modulaire

Théorème 16. (Critère d'Eisenstein)

Soit
$$P = \sum_{i=1}^{n} a_i X^i \in \mathbb{Z}[X]$$
, avec $n \ge 1$. On suppose qu'il existe p premier tel que :

• p divise a_i pour tout $i \in [0, n-1]$.

2 Section 3

- p ne divise pas a_n .
- p^2 ne divise pas a_0 .

Alors P est irréductible dans $\mathbb{Q}[X]$.

Corollaire 17. L'équation $a_n x^n + \cdots + a_0 = 0$ avec $a_0, \ldots, a_n \in \mathbb{Z}$ admet des solutions rationnelles de la forme p/q avec $p \land q = 1$ si et seulement si $p|a_0$ et $q|a_n$.

Théorème 18. Soit $P = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$, et \overline{P} sa réduction sur \mathbb{F}_p avec p premier, c'est-à-dire $\overline{P} = \sum_{i=0}^{n} \overline{a_i} X^i$. Si \overline{P} est irréductible sur \mathbb{F}_p , alors P est irréductible sur \mathbb{Z} .

Exemple 19. $X^3 + X + 1$ est irréductible sur \mathbb{Z} .

Remarque 20. La réciproque est fausse, par exemple en prenant $P = X^4 + 1$.

Remarque 21. On en déduit que si une équation de la forme P(x) = 0 avec $P \in \mathbb{Z}[X]$ n'a pas de solutions sur \mathbb{F}_p , alors elle n'en a pas non plus sur \mathbb{Z} . Dans le cas où elle admet des solutions sur \mathbb{F}_p , on regarde si ces solutions peuvent être étendues à \mathbb{Z} .

2.3 Résidus quadratiques

On se donne p un nombre premier.

Cadre 22. On cherche à résoudre l'équation $ax^2 + bx + c \equiv 0[p]$, où $a,b,c \in \mathbb{Z}$. Ceci est équivalent à chercher les racines de $\bar{a}\,X^2 + \bar{b}\,X + \bar{c} \in \mathbb{F}_p[X]$. Si p>2 et $\bar{a} \neq 0$, ce polynôme admet des racines si et seulement si $\Delta = \bar{b}^2 - 4\,\bar{a}\,\bar{c}$ est un carré α^2 dans \mathbb{F}_p . Si tel est le cas, l'intégrité de \mathbb{F}_p assure l'existence de deux racines, α et $-\alpha$. On se pose alors la question de caractériser les carrés dans \mathbb{F}_p .

Notation 23. On pose \mathbb{F}_p^2 : ={ $y \in \mathbb{F}_p$: $\exists x \in \mathbb{F}_p$, $y = x^2$ }, et \mathbb{F}_p^{*2} : = $\mathbb{F}_p^* \cap \mathbb{F}_p^2$.

Proposition 24. Si p = 2, on a $\mathbb{F}_p^2 = \mathbb{F}_p$. Si p > 2, on a $|\mathbb{F}_p^2| = \frac{q+1}{2}$ et $|\mathbb{F}_p^{*2}| = \frac{q-1}{2}$.

Proposition 25. On suppose p > 2 et on se donne $a \in \mathbb{F}_p^*$. Alors

$$a^{\frac{p-1}{2}} = \begin{cases} 1 & \text{si a est un carr\'e dans } \mathbb{F}_p^* \\ -1 & \text{si a n'est pas un carr\'e dans } \mathbb{F}_p^* \end{cases}$$

Définition 26. On définit le symbole de Legendre pour p > 2 et $a \in \mathbb{F}_p$ par

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{si a est un carr\'e dans } \mathbb{F}_p^*, \\ -1 & \text{si a n'est pas un carr\'e dans } \mathbb{F}_p^*, \\ 0 & \text{si } a = 0. \end{cases}$$

Remarque 27. D'après ce qui précède, pour $a \neq 0$ on a donc $\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}}$. En particulier, le symbole de Legendre est multiplicatif, au sens où $\left(\frac{a}{p}\right) \times \left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$.

Proposition 28. Soit p un nombre premier impair et a un élément de \mathbb{F}_p^* . On a

$$|\{x \in \mathbb{F}_p : ax^2 = 1\}| = 1 + \left(\frac{a}{p}\right)$$

Développement 1 :

Théorème 29. (Loi de réciprocité quadratique)
Soit p et q deux nombres premiers impairs distincts. Alors on a

$$\left(\frac{p}{q}\right)\cdot\left(\frac{q}{p}\right)=\left(-1\right)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}$$

Exemple 30. Calcul du symbol de Legendre :

$$\left(\frac{23}{59}\right) = (-1)^{11.29} \left(\frac{59}{23}\right) = -\left(\frac{13}{23}\right) = \dots = \left(\frac{2}{3}\right) = -1.$$

Lemme 31. Pour tout nombre premier p impair, 8 divise $p^2 - 1$.

Proposition 32. Pour tout nombre premier p impair, on $a\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$.

3 Méthodes de résolution

3.1 Descente infinie

Principe 33. On cherche à démontrer qu'une équation n'a pas de solution. Pour cela, on suppose par l'absurde qu'il y en a une. On construit à partir de cette solution une autre solution strictement plus « petite », au sens où pour une fonction $\varphi \colon \mathbb{Z}^n \to \mathbb{N}$ donnée, et une solution $(x_1, \ldots, x_n) \in \mathbb{Z}^n$, il existe une autre solution (x_1', \ldots, x_n') telle que $\varphi(x_1', \ldots, x_n') < \varphi(x_1, \ldots, x_n)$. Par récurrence, on obtient donc une suite (infinie) $(\varphi(x_1^{(m)}, \ldots, x_n^{(m)}))_{m \in \mathbb{N}}$ strictement décroissante, ce qui est absurde.

Théorème 34. (Fermat). Les équations de la forme $x^4 + y^4 = z^2$ et $x^4 + y^4 = z^4$ n'ont pas de solutions non triviales.

Méthodes de résolution

Théorème 35. (Fermat-Wiles, Admis bien sûr). L'équation $x^n + y^n = z^n$ pour $n \ge 2$ n'admet pas de solution non triviale.

3.2 Une méthode géométrique

Proposition 36. Résoudre l'équation $x^2 + y^2 = z^2$ pour $(x, y, z) \in \mathbb{Z}^3$ revient à chercher les $(X, Y) \in \mathbb{Q}^2$ tels que $X^2 + Y^2 = 1$.

Théorème 37. (Paramétrisation de U)

L'application $\varphi: t \mapsto \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$ est une bijection de \mathbb{R} vers $\mathbb{U} \setminus \{(-1,0)\}$. Elle s'étend en une bijection de $\overline{\mathbb{R}}$ vers \mathbb{U} en posant $\varphi(\infty) = (-1,0)$.

Proposition 38. Les points de $\mathbb{U}\setminus\{(-1,0)\}$ à coordonnées rationnelles s'écrivent sous la forme $\left(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2}\right)$ avec $t\in\mathbb{Q}$.

Théorème 39. Les solutions entières de $x^2 + y^2 = z^2$ sont de la forme $(u^2 - v^2, 2uv, u^2 + v^2)$.

3.3 Utilisation des entiers de Gauss

Définition 40. On note $\mathbb{Z}[i] := \{a+ib : a \in \mathbb{Z} \text{ et } b \in \mathbb{Z}\}$ l'anneau des entiers de Gauss. On définit sur $\mathbb{Z}[i]$ l'application $N : \mathbb{Z}[i] \to \mathbb{N}$, $a+ib \mapsto a^2+b^2$. Pour $z \in \mathbb{Z}[i]$, N(z) est appelé la norme de l'entier de Gauss z. On remarque que N est multiplicative $z \in \mathbb{Z}[i]$, N(zz') = N(z)N(z').

Définition 41. On note $\Sigma := \{n \in \mathbb{Z} : \exists a, b \in \mathbb{Z} \mid n = a^2 + b^2\}$ l'ensemble des entiers qui s'écrivent comme somme de deux carrés.

Proposition 42. $\mathbb{Z}[i]$ est euclidien pour l'application N, donc principal.

Lemme 43. L'anneau $\mathbb{Z}[i]^{\times}$ des inversibles de $\mathbb{Z}[i]$ est $\{\pm 1, \pm i\}$.

Lemme 44. Soit p un nombre premier impair. On a l'équivalence $p \in \Sigma \iff p$ est réductible dans $\mathbb{Z}[i]$.

Lemme 45. Σ est stable par multiplication.

Développement 2 :

Théorème 46. Soit p un nombre premier impair. Alors $p \in \Sigma \iff p \equiv 1[4]$