P. Maurer ENS Rennes

Leçon 108 : Exemples de parties génératrices d'un groupe. Applications.

Devs:

- Décomposition de Bruhat. Application aux générateurs de $GL_n(\mathbb{K})$.
- Le groupe SO₃(R) est simple.

Références:

- 1. Ulmer, Théorie des groupes
- 2. Perrin, Cours d'algèbre
- 3. Gourdon, Algèbre
- 4. Dos Santos, Groupes finis et leurs représentations (Poly M1 Jussieu)

Dans tout le plan, G désigne un groupe.

1 Parties génératrices, générateurs, relations.

1.1 Partie génératrice d'un groupe

Définition 1. Soit A une partie de G. Il existe un plus petit sous-groupe de G contenant A. On le note $\langle A \rangle$ et on l'appelle sous-groupe de G engendré par A.

Remarque 2. L'existence de $\langle A \rangle$ peut se voir de deux manières :

- De l'extérieur : $\langle A \rangle = \bigcap_{\substack{H < G \\ A \subset H}} H$.
- De l'intérieur : $\langle A \rangle = \{a_1 \cdots a_n : a_i \in A \cup A^{-1} \text{ et } n \in \mathbb{N}\}, \text{ où } A^{-1} = \{x \in G : x^{-1} \in A\}.$

Définition 3. On dit que $A \subset G$ engendre G si $G = \langle A \rangle$. On dit que G est de type fini si il admet une partie génératrice finie.

Exemple 4. $\langle 1 \rangle = \mathbb{Z}, \langle \overline{1}^{[n]} \rangle = \mathbb{Z}/n\mathbb{Z}.$

Exemple 5. On définit le groupe dérivé D(G) comme le sous-groupe de G engendré par les commutateurs de G, i.e les éléments de la forme $xyx^{-1}y^{-1}$ avec $x, y \in G$.

Exemple 6. D(G) est le plus petit sous-groupe de G tel que G/D(G) soit ablien.

Si G est abélien, on a $D(G) = \{e\}$.

1.2 Groupes libres et présentations

Définition 7. Soit \mathcal{A} un ensemble fini, appelé alphabet. On considère l'ensemble $\mathcal{M}(\mathcal{A})$ des « mots » sur \mathcal{A} de longueur finis, constitués des produits des éléments a_i de \mathcal{A} et de leurs inverses a_i^{-1} . On dit que deux mots m et m' sont équivalents, et on note $m \sim m'$, si l'on peut aller de l'un à l'autre en ajoutant ou en enlevant des termes de la forme $a_i a_i^{-1}$ ou $a_i^{-1} a_i$. Ceci définit une relation d'équivalence sur $\mathcal{M}(\mathcal{A})$.

Définition 8. On appelle groupe libre l'alphabet A, et on note F(A), le groupe dont l'ensemble sous-jacent est $\mathcal{M}(A)/\sim$ et la loi est la concaténation des représentants des classes de mots.

Exemple 9. \mathbb{Z} est un groupe libre sur l'alphabet $\{1\}$. $\mathbb{Z}/n\mathbb{Z}$ n'est pas un groupe libre sur l'alphabet $\{\overline{1}\}$.

Remarque 10. Un groupe libre est soit d'ordre 1, soit infini.

Proposition 11. Soit A un ensemble et G un groupe. Toute application $f: A \to G$ peut être étendue de manière unique en un morphisme $\varphi_f: F(A) \to G$.

Définition 12. Soit A un ensemble, G un groupe, et φ_f : $F(A) \to G$ un morphisme surjectif. Un élément de $\operatorname{Ker}(\varphi_f)$ est appelé une relation entre les générateurs $\{f(a): a \in A\}$ de G.

Si un sous-ensemble R de $Ker(\varphi_f)$ engendre $Ker(\varphi_f)$, alors on appelle A et R une présentation par générateurs et relations de G (i.e G est isomorphe au quotient $F(A)/\langle R \rangle$), et on note :

$$G = \langle \mathcal{A} | R \rangle$$

Exemple 13. Le groupe cyclique à n éléments a pour présentation $\langle a \mid a^n \rangle$. Le groupe diédral D_n a pour présentation $\langle r, \tau \mid r^n, \tau^2, \tau r \tau^{-1} r \rangle$. Le groupe des quaternions \mathbb{H}_8 a pour présentation $\langle i, j \mid i^4, i^2 j^{-2}, j i j^{-1} i \rangle$.

2 Groupes cycliques

Définition 14. On dit que G est abélien si hq = qh pour tout $q, h \in G$.

Définition 15. On dit que G est monogène s'il existe $a \in G$ tel que l'on ait $G = \langle a \rangle$. Si de plus G est fini, on dit que G est cyclique.

Remarque 16. Tout groupe monogène est abélien.

Proposition 17. Tout groupe cyclique G est isomorphe à $\mathbb{Z}/n\mathbb{Z}$ avec n = |G|.

Exemple 18. Le groupe \mathbb{U}_n des racines $n^{\text{èmes}}$ de l'unité est isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

Section 4

Définition 19. Un élément $a \in G$ est dit d'ordre $p \in \mathbb{N}^*$ si $\langle a \rangle$ est fini d'ordre p. L'ordre est aussi le plus petit entier p non nul tel que $a^p = e$, et on $a \langle a \rangle = \{e, a, \dots, a^{p-1}\}$.

Proposition 20. Si G est fini d'ordre n, alors l'ordre de tout élément de G divise n. En particulier, tout élément $a \in G$ vérifie $a^n = e$.

Proposition 21. Soit $a \in G$ un élément d'ordre p. On a l'équivalence $a^q = e \iff q \mid e$.

Proposition 22. Si |G| est premier, alors G est cyclique, engendré par tout élément différent du neutre.

Proposition 23. Si G est cyclique d'ordre n ($G = \langle a \rangle$), alors :

$$\langle a^k \rangle = G \iff k \wedge n = 1$$

De manière générale, l'ordre de a^k est $\frac{n}{k \wedge n}$.

Définition 24. Pour $n \ge 2$, on note $\varphi(n) := |\{k \le n : k \land n = 1\}|$, et on convient que $\varphi(1) = 1$.

 $\varphi \colon \mathbb{N}^* \to \mathbb{N}^*$ est appelée la fonction d'Euler.

Proposition 25. Il y a $\varphi(n)$ générateurs dans $\mathbb{Z}/n\mathbb{Z}$.

Théorème 26. On suppose que G est cyclique d'ordre n.

Alors tout sous-groupe de G est cyclique, et pour tout d|n, il existe un unique sous-groupe H_d de G d'ordre d.

Théorème 27. Pour tout
$$n \in \mathbb{N}^*$$
, on a $\varphi(n) = \sum_{d \mid n} \varphi(d)$.

3 Groupe symétrique et diédral

3.1 Groupe symétrique

Définition 28. On appelle groupe symétrique, et on note S_n , le groupe des bijections de l'ensemble $\{1, \ldots, n\}$.

Définition 29. Soit $\ell \ge 1$ et $i_1, ..., i_\ell$ des éléments distincts de $\{1, ..., n\}$. La permutation γ définie par :

$$\begin{cases} \gamma(k) = k \text{ si } k \notin \{i_1, \dots, i_{\ell}\} \\ \gamma(i_j) = i_{j+1} \text{ si } i \leq \ell - 1 \\ \gamma(i_{\ell}) = i_1 \end{cases}$$

Est notée $(i_1 \cdots i_\ell)$ et est appelée cycle de longueur ℓ . Un cycle de longueur 2 est appelé une transposition. On appelle support de $(i_1 \cdots i_\ell)$ l'ensemble $\{i_1, \ldots, i_\ell\}$.

Théorème 30. Toute permutation $\sigma \in S_n$ s'écrit de manière unique comme produit de cycles à support disjoints. En particulier, les cycles engendrent S_n .

Proposition 31. Tout cycle $(i_1 \cdots i_\ell)$ s'écrit comme produit de transpositions $(i_1i_2)(i_2i_3)\cdots (i_{\ell-1}i_\ell)$. Au vu du théorème 30, on en déduit que S_n est engendré par les transpositions.

En fait, les transpositions (1,i) avec $i \leq n$ suffisent pour engendrer S_n .

Corollaire 32. Pour $\sigma \in S_n$ une permutation, on appelle type de σ la liste des longueurs des cycles apparaissant dans la décomposition de σ en produit de cycles à support disjoints classées par ordre croissants.

Alors deux permutations sont conjuguées si et seulement si elles ont le même type. Ceci détermine entièrement les classes de conjugaisons de S_n .

Proposition 33. Il existe un unique morphisme $\varepsilon: \mathcal{S}_n \to \{-1,1\}$ non trivial. Il est appelé la signature. On note $\mathcal{A}_n = \operatorname{Ker}(\varepsilon)$, et on a $|\mathcal{A}_n| = \frac{n!}{2}$.

Proposition 34. A_n est engendré par les cycles de la forme (1, i, j) avec i et j distincts dans $\{2, \ldots, n\}$. En particulier, A_n est engendré par les 3-cycles de S_n .

Théorème 35. Pour $n \ge 5$, A_n est simple.

Corollaire 36. Pour $n \ge 5$, $D(S_n) = A_n$.

3.2 Groupe diédral

Définition 37. Pour $n \in \mathbb{N}^*$, on appelle groupe diédral D_n le groupe des isométries affines préservant le n-gône régulier.

Proposition 38. D_n est engendré par r et s, où r est une rotation d'angle $\frac{2\pi}{n}$ et s une symétrie axiale. On a en fait la présentation :

$$D_n = \langle r, s \mid s^2, r^n, sr^2 \rangle$$

Proposition 39. On a également $D_n \simeq \mathbb{Z}/n\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$.

Proposition 40. On a $D(D_{2m}) = \langle r^2 \rangle$ et $D(D_{2m+1}) = \langle r \rangle$.

4 Autour du groupe linéaire

4.1 Générateurs du groupe linéaire et décomposition de Bruhat

Dans cette partie, k désigne un corps quelconque et n désigne un entier plus grand que 1.

Autour du groupe linéaire

Définition 41. On appelle drapeau de k^n toute suite $\{0\} = F_0 \subset \cdots \subset F_n$ de sous-espaces vectoriels de k^n tels que les inclusions soient strictes. Si de plus $\dim(F_i) = i$ pour tout i, on dit que le drapeau (F_0, \ldots, F_n) est complet.

Exemple 42. Soit (e_1, \ldots, e_n) la base canonique de k^n . On définit $F_i = \text{Vect}(e_1, \ldots, e_i)$ pour $i \ge 1$ et $F_0 = \{0\}$. Alors $C = (F_0, \ldots, F_n)$ est un drapeau complet, appelé le drapeau complet canonique.

Définition 43. On note $B_n(k)$ l'ensemble des matrices triangulaires inversibles de $\mathrm{GL}_n(k)$.

Proposition 44. $B_n(k)$ est le stabilisateur du drapeau complet canonique C pour l'action naturelle de $GL_n(k)$ sur les drapeaux. En particulier, $B_n(k)$ est un sous-groupe de $GL_n(k)$.

Définition 45. Soit $\lambda, \alpha \in k$ et $(E_{ij})_{1 \leq i, j \leq n}$ la base canonique de $\mathcal{M}_n(k)$. On appelle transvection toute matrice de la forme $T_{ij}(\lambda) = I_n + \lambda E_{ij}$ avec $i \neq j$. On appelle dilatation toute matrice de la forme $D_i(\alpha) = I_n + (\alpha - 1) E_{ii}$.

Proposition 46. Pour i < j, $T_{ij}(\lambda) \in B_n(k)$ et pour $\alpha \neq 0$, $D_i(\alpha) \in B_n(k)$.

Remarque 47. Multiplier à gauche par une transvection $T_{ij}(\lambda)$ (respectivement multiplier à droite par $T_{ij}(\lambda)$) revient à faire l'opération sur les lignes $L_i \leftarrow L_i + \lambda L_j$ (respectivement l'opération sur les colones $C_i \leftarrow C_i + \lambda C_i$).

Multiplier à gauche par une dilatation $D_i(\alpha)$ (respetivement multiplier à droite par $D_i(\alpha)$) revient à faire l'opération sur les lignes $L_i \leftarrow \alpha L_i$ (respectivement l'opération sur les colones $C_i \leftarrow \alpha C_i$).

Proposition 48. Soit (e_1, \ldots, e_n) la base canonique de k^n . Pour $\sigma \in S_n$, on note w_{σ} l'application linéaire donnée par $w_{\sigma}(e_i) = e_{\sigma(i)}$.

Alors $w: \mathcal{S}_n \to \mathrm{GL}_n(k)$ est un morphisme de groupes injectif.

Développement 1 :

Théorème 49. (Décomposition de Bruhat)

On a la décomposition suivante :

$$\mathsf{GL}_n(k) = \bigsqcup_{\sigma \in \mathcal{S}_n} B_n(k) \, w_\sigma \, B_n(k)$$

Corollaire 50. $GL_n(k)$ est engendré par les transvections et les matrices diagonales inversibles.

Définition 51. L'application déterminant det: $GL_n(k) \rightarrow k^*$ est un morphisme de groupes. Son noyau est noté $SL_n(k)$ et est appelé groupe spécial linéaire d'ordre n.

Théorème 52. $SL_n(k)$ est engendré par les transvections.

4.2 Le groupe orthogonal

Ici, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et $n \in \mathbb{N}^*$.

Définition 53. L'ensemble des isométries linéaires de \mathbb{K}^n est un groupe appelé groupe orthogonal et noté $O_n(\mathbb{K})$.

Proposition 54. Le sous-ensemble $SO_n(\mathbb{K})$ des isométries de déterminant 1 est un sous-groupe distingué de $O_n(\mathbb{K})$, appelé groupe spécial orthogonal.

Proposition 55. Soit $u \in GL_n(\mathbb{K})$ avec $u^2 = Id$. Il existe deux sous-espaces E^+ et E^- qui vérifient :

- 1. $\mathbb{K}^n = E^+ \oplus E^-$.
- 2. $u_{|E^+} = \mathrm{Id}_{E^+}$ et $u_{|E^-} = -\mathrm{Id}_{E^-}$.

Dans une base (e_1, \ldots, e_n) , telle que $e_1, \ldots, e_p \in E^+$ et $e_{p+1}, \ldots, e_n \in E^-$, la matrice de u est donnée par :

$$\begin{pmatrix}
1 & & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & -1 & & \\
& & & \ddots & \\
& & & (0) & & -1
\end{pmatrix}$$

Si on a $u^2 = \text{Id}$ et $u \neq \text{Id}$, on dit que u est une involution (ou encore une symétrie). Si $\dim(E^-) = 1$ (resp. 2), on dit que u est une réflexion (resp. un renversement).

Proposition 56. Soit $u \in GL_n(\mathbb{K})$ avec $u^2 = Id$. Alors u est une isométrie si et seulement si E^+ et E^- sont orthogonaux.

Théorème 57. Le groupe $O_n(\mathbb{K})$ est engendré par les rélfexions orthogonales. Plus précisément, si $u \in O_n(\mathbb{K})$, u est produit d'au plus n réflexions.

Théorème 58. Pour $n \geq 3$, $SO_n(\mathbb{K})$ est engendré par les renversements, plus précisément, tout élément $u \in SO_n(\mathbb{K})$ est produit d'au plus n renversements.

Lemme 59. Soit $n \ge 3$ et τ_1, τ_2 des réflexions. Il existe des renversements σ_1 et σ_2 tels que $\tau_1 \tau_2 = \sigma_1 \sigma_2$.

Proposition 60. Pour $n \ge 2$, $D(O_n(\mathbb{K})) = SO_n(\mathbb{K})$. Pour $n \ge 3$, $D(SO_n(\mathbb{K})) = SO_n(\mathbb{K})$.

Développement 2 :

Théorème 61. Le groupe $SO_3(\mathbb{R})$ est simple.