P. Maurer ENS Rennes

Leçon 106. Groupe linéaire d'un espace vectoriel de dimension finie E, sous-groupes de $\mathrm{GL}(E)$. Applications.

Devs:

- Décomposition de Bruhat
- Morphismes de S¹ vers GL_n(R)

Références:

- Perrin, Cours d'algèbre
- Gourdon, Algèbre
- Caldero, H2G2
- FGN, Oraux X-ENS Algèbre 3
- Zavidovique, Un max de maths
- BMP, Objectif Agreg
- Rouvière, Petit guide de calcul différentiel

Dans tout ce qui suit, E est un espace vectoriel de dimension finie $n \in \mathbb{N}$ sur un corps commutatif k.

1 Généralités sur le groupe linéaire

1.1 Le groupe $(GL(E), \circ)$

Proposition 1. Soit $f \in \mathcal{L}(E)$ un endomorphisme. Les propositions suivantes sont équivalentes

- f est surjective,
- $Ker(f) = \{0\},\$
- f est un isomorphisme,
- Pour toute base $\mathcal{B} = (e_1, \dots, e_n)$ de E, la famille $\mathcal{B}' = (f(e_1), \dots, f(e_n))$ est une base de E.

Définition 2. Si les conditions de la proposition 1 sont réunies, on dit que f est un automorphisme de E. On note $\mathrm{GL}(E)$ l'ensemble des automorphismes de E et on l'appelle groupe linéaire de E.

Proposition 3. L'ensemble GL(E) muni de la loi de composition \circ est un groupe.

Remarque 4. La donnée d'une base de E définit un isomorphisme de $\operatorname{GL}(E)$ vers le groupe $(\operatorname{GL}_n(k), \times)$ des matrices $n \times n$ inversibles, à coefficients dans k. Celui ci n'est toutefois pas canonique et dépend du choix de la base en question.

Proposition 5. Pour $f \in \mathcal{L}(E)$, on a $f \in GL(E) \iff \det(f) \neq 0$.

Proposition 6. L'application déterminant est un morphisme de groupes entre $(GL(E), \circ)$ et (k^*, \times) . Son noyau est appelé groupe spécial linéaire et est noté SL(E). Il est isomorphe au groupe $SL_n(k)$ des matrices de déterminant 1.

1.2 Transvections et dilatations

Proposition 7. Soit H un hyperplan de E et $u \in GL(E)$ tel que $u_{|H} = Id_H$. Les conditions suivantes sont équivalentes :

- On $a \det(u) = \alpha \neq 1$ (i.e $u \notin SL(E)$).
- L'endomorphisme u amdet une valeur propre $\alpha \neq 1$ et u est diagonalisable.
- On a $D = \operatorname{Im}(u \operatorname{Id}_E) \notin H$.
- Dans une base convenable, u a pour matrice $D_i(\alpha) = I_n + (\alpha 1) E_{ii}$ avec $i \in [1, n]$ et $\alpha \neq 1$.

On dit qu'un tel endomorphisme u est une dilatation d'hyperplan H, de droite D, et de paramètre α . La matrice $D_i(\alpha)$ est appelée une matrice de dilatation.

Proposition 8. Soit H un hyperplan de E, et $f \in E^*$ tel que H = Ker(f). Soit $u \in \text{GL}(E)$ tel que $u \neq \text{Id}_E$ et $u_{|H} = \text{Id}_H$. Les conditions suivantes sont équivalentes :

- On $a \det(u) = 1$ (i.e $u \in SL(E)$).
- $\bullet \quad L'endomorphisme \ u \ n'est \ pas \ diagonalisable.$
- On a $D = \operatorname{Im}(u \operatorname{Id}) \subset H$.
- Il existe $a \in H$ non nul tel que $\forall x \in E \ u(x) = x + f(x) \ a$,
- Dans une base convenable, u a pour matrice $T_{ij}(\lambda) = I_n + \lambda E_{ij}$ avec $\lambda \in k$ et i, $j \in [\![1,n]\!]$.

On dit qu'un tel endomorphisme u est une transvection d'hyperplan H et de droite D. La matrice $T_{ij}(\lambda)$ est appelé une matrice de transvection.

Proposition 9. Deux dilatations sont conjuguées dans $\mathrm{GL}(E)$ si et seulement si elles ont le même rapport.

Proposition 10. Soit τ une transvection de droite D et d'hyperplan H. Alors $u\tau u^{-1}$ est une transvection de droite u(D) et d'hyperplan u(H). Les transvections sont ainsi conjuguées dans GL(E).

2 Section 2

Théorème 11. Les transvections engendrent SL(E).

Corollaire 12. Les transvections et les dilatations engendrent GL(E).

1.3 Quelques calculs de cardinaux

Définition 13. Pour $n \in \mathbb{N}$, on note $U_n(k)$ l'ensemble des matrices triangulaires supérieures dont les coefficients diagonaux sont tous égaux à 1. C'est un sous-groupe de $\mathrm{GL}_n(k)$.

Proposition 14. Soit p un nombre premier et $n \in \mathbb{N}$. Alors on a :

•
$$|\mathrm{GL}_n(\mathbb{F}_p)| = (p^n - 1) \cdots (p^n - p^{n-1}) = mp^{\frac{n(n-1)}{2}},$$

•
$$|\operatorname{SL}_n(\mathbb{F}_p)| = (p^n - 1) \cdots (p^n - p^{n-2}) \cdot p^{n-1},$$

•
$$|U_n(\mathbb{F}_p)| = p^{\frac{n(n-1)}{2}}$$
.

Où $m = (p-1) \cdots (p^n-1)$ est premier avec p.

Proposition 15.

Le nombre de matrices diagonalisables de $\mathcal{M}_n(\mathbb{F}_q)$ est :

$$\sum_{n_1+\cdots+n_q=n} \frac{|\mathrm{GL}_n(\mathbb{F}_q)|}{\prod_{i=1}^q |\mathrm{GL}_{n_i}(\mathbb{F}_q)|}$$

2 Sous-groupes de GL(E)

2.1 Centre, groupe dérivé et groupes projectifs

Proposition 16. Soit $u \in GL(E)$. Si u laisse invariantes toutes les droites vectorielles de E, alors u est une homotéthie.

Corollaire 17. Le centre Z de $\mathrm{GL}(E)$ est formé des homothéties $x \mapsto \lambda x$, avec $\lambda \in k^*$. Il est donc isomorphe à k^* .

Le centre de SL(E) est $Z \cap SL(E)$, il est isomorphe à $\mu_n(k) = \{\lambda \in k : \lambda^n = 1\}$.

Définition 18. On appelle groupe projectif linéaire, et on note $\mathrm{PGL}(E)$, le quotient de $\mathrm{GL}(E)$ par son centre Z. De même, le quotient de $\mathrm{SL}(E)$ par son centre est noté $\mathrm{PSL}(E)$.

Proposition 19. Si k est alaébriquement clos, on a un isomorphisme $PSL(E) \simeq PGL(E)$.

Théorème 20. Rappelons que pour un groupe G, on note D(G) le groupe dérivé de G, qui est engendré par les commutateurs $[x,y] = xyx^{-1}y^{-1}$, pour tout $x,y \in G$. On a alors :

- $D(GL_n(k)) = SL_n(k)$ sauf pour le cas $(n = 2 \text{ et } k = \mathbb{F}_2)$,
- $D(\operatorname{SL}_n(k)) = \operatorname{SL}_n(k)$ sauf dans les deux cas $(n=2 \text{ et } k = \mathbb{F}_2)$ et $(n=2 \text{ et } k = \mathbb{F}_3)$.

Théorème 21. Le groupe $PSL_n(k)$ est simple sauf dans les deux cas $(n=2 \text{ et } k = \mathbb{F}_2)$ et $(n=2 \text{ et } k = \mathbb{F}_3)$.

 ${\bf Th\'{e}or\`{e}me~22.}~(isomorphismes~exceptionnels)$

On a les isomorphismes suivants :

- $\operatorname{GL}_2(\mathbb{F}_2) = \operatorname{SL}_2(\mathbb{F}_2) = \operatorname{PSL}_2(\mathbb{F}_2) \simeq \mathcal{S}_3$,
- $\operatorname{PGL}_2(\mathbb{F}_3) \simeq \mathcal{S}_4$ et $\operatorname{PSL}_2(\mathbb{F}_3) \simeq \mathcal{A}_4$,
- $\operatorname{PGL}_2(\mathbb{F}_4) = \operatorname{PSL}_2(\mathbb{F}_4) \simeq \mathcal{A}_5$,
- $\operatorname{PGL}_2(\mathbb{F}_5) \simeq \mathcal{S}_5$ et $\operatorname{PSL}_2(\mathbb{F}_5) \simeq \mathcal{A}_5$.

2.2 Groupe orthogonal

Dans cette partie, on se donne f une forme sesquilinéaire sur E, non dégénérée.

Définition 23. On appelle isométries de E (relativement à f) les automorphismes $u \in GL(E)$ qui vérifient $\forall x, y \in E$ f(u(x), u(y)) = f(x, y).

Si f est symétrique, on note O(f) le groupe orthogonal : c'est l'ensemble des isométries de E relativement à f. On note $SO(f) = O(f) \cap SL(E)$ le groupe spécial orthogonal.

Remarque 24. Si $u \in O(f)$, alors $det(u) \in \{-1, 1\}$.

Notation 25. On note aussi $O^+(f) := SO(f)$, et $O^-(f) := O(f) \setminus SO(f)$ l'ensemble des isométries de déterminant -1.

Proposition 26. Si f est symétrique (resp. hermitienne), et si $car(k) \neq 2$, un élément $u \in GL(E)$ est une isométrie si et seulement si il conserve la forme quadratique q attachée à f, i.e si on a

$$\forall x \in E \quad q(u(x)) = q(x).$$

Dans la suite, on suppose que f est symétrique et que $car(k) \neq 2$.

Proposition 27. Soit $u \in GL(E)$ avec $u^2 = Id$, et soient E^+ et E^- les sous-espaces associés à u. Alors u est une isométrie si et seulement si E^+ et E^- sont orthogonaux.

Remarque 28. Si $k = \mathbb{R}$ et si f désigne le produit scalaire usuel sur $E = \mathbb{R}^n$, alors on note $O_n(\mathbb{R})$ l'espace des matrices orthogonales, et $SO_n(\mathbb{R})$ l'espace des matrices orthogonales de déterminant 1. Notons que dans ce cas, on a $A \in O_n(\mathbb{R}) \iff^t AA = I_n$.

Actions et topologie du groupe linéaire

Théorème 29. (Réduction des isométries)

On suppose encore $k = \mathbb{R}$, $E = \mathbb{R}^n$ et f désigne le produit scalaire usuel.

Soit u un endomorphisme orthogonal. Il existe une base orthonormale dans laquelle la matrice de u est :

$$\begin{pmatrix}
R(\theta_1) & & & & \\
& \ddots & & & (0) & \\
& & R(\theta_r) & & \\
& & \varepsilon_1 & & \\
& & (0) & & \ddots & \\
& & & \varepsilon_s
\end{pmatrix}$$

$$O\grave{u}\ R(\theta_i) = \left(\begin{array}{cc} \cos(\theta_i) & -\sin(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \end{array}\right)\ et\ \varepsilon_i \in \{-1,1\},\ avec\ \theta_i \in \mathbb{R}\ et\ \theta_i \not\equiv 0\ [\pi].$$

2.3 Sous-groupes finis et matrices de permutations

Définition 30. Soit (e_1, \ldots, e_n) la base canonique de k^n . Pour $\sigma \in S_n$, on note w_{σ} l'application linéaire donnée par $w_{\sigma}(e_i) = e_{\sigma(i)}$ pour tout $i \in [1, n]$.

Proposition 31. L'application $w: \sigma \mapsto w_{\sigma}$ est un morphisme de groupes injectif de S_n dans $GL_n(k)$.

Théorème 32. (Cayley)

Soit G un groupe fini d'ordre $n \in \mathbb{N}$. Alors il existe un morphisme de groupes injectif $G \to \mathcal{S}(G) \simeq \mathcal{S}_n$.

Corollaire 33. Si G est un groupe fini d'ordre $n \in \mathbb{N}$, alors on a un morphisme injectif

$$G \to \mathcal{S}(G) \simeq \mathcal{S}_n \to \mathrm{GL}_n(k)$$
.

En notant $\varphi: G \to \mathrm{GL}_n(k)$ ce morphisme, on en déduit que $\varphi(G)$ est un sous-groupe de $\mathrm{GL}_n(k)$ d'ordre n.

Proposition 34. Soit G un p-groupe agissant sur un ensemble X. On considère l'ensemble des points fixes de X pour cette action $X^G := \{x \in X : \forall g \in G \mid gx = x\}$. Alors on a l'égalité :

$$|X| \equiv |X^G| \ [p]$$

Définition 35. Soit G un groupe d'ordre $p^{\alpha}m$ avec $p \nmid m$. On dit que H < G est un p-Sylow de G si c'est un sous-groupe d'ordre p^{α} .

Théorème 36. (Sulow)

Soit G un groupe d'ordre $p^{\alpha}m$ avec $p \nmid m$. Alors :

- 1. G possède au moins un p-Sylow.
- 2. Les p-Sylow sont tous conjugués entre eux.
- 3. En notant k le nombre de p-Sylow, on a $k \equiv 1 \pmod{p}$ et k divise m.

3 Actions et topologie du groupe linéaire

3.1 Drapeaux et décomposition de Bruhat

Définition 37. On appelle drapeau de k^n toute suite $(0 = F_0 \subset \cdots \subset F_n)$ de sous-espaces vectoriels de k^n telles que les inclusions soient strictes. Si de plus $\dim(F_i) = i$, on dit que le drapeau est complet. On note Drap l'ensemble des drapeaux complets de k^n .

Notation 38. On appelle drapeau complet canonique le drapeau $C := \{0\} \subset \text{Vect}(e_1) \subset \cdots \subset \text{Vect}(e_1, \dots, e_n)$, où (e_1, \dots, e_n) désigne la base canonique de k^n .

Définition 39. On note $B_n(k)$ l'ensemble des matrices triangulaires inversibles de $\mathrm{GL}_n(k)$.

Proposition 40. $B_n(k)$ est le stabilisateur de C pour l'action de $GL_n(k)$ sur Drap. En particulier, c'est un sous-groupe de $GL_n(k)$.

Développement 1 :

Théorème 41. (Bruhat)

En notant, pour $\sigma \in S_n$, $B_n(\mathbb{K})$ $w_\sigma B_n(\mathbb{K}) := \{tw_\sigma s : t, s \in B_n(\mathbb{K})\}$, on a la décomposition :

$$\mathsf{GL}_n(\mathbb{K}) = \bigsqcup_{\sigma \in \mathcal{S}_n} B_n(\mathbb{K}) w_{\sigma} B_n(\mathbb{K})$$

Corollaire 42. $GL_n(\mathbb{K})$ agit sur $Drap \times Drap$ et l'action possède n! orbites.

3.2 Actions de GL(E) sur les espaces de matrice

Proposition 43. (Théorème du rang)

 $\operatorname{GL}_n(k) \times \operatorname{GL}_m(k)$ agit sur $\mathcal{M}_{n,m}(k)$ par équivalence, via :

$$\cdot \begin{cases} (\operatorname{GL}_n(k) \times \operatorname{GL}_m(k)) \times \mathcal{M}_{n,m}(k) & \to & \mathcal{M}_{n,m}(k) \\ ((P,Q),M) & \mapsto & PMQ^{-1} \end{cases}$$

Section 3

Chaque orbite pour cette action contient un représentant de la forme :

$$\begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}$$

L'entier k est appelé le rang de chaque matrice de l'orbite.

Proposition 44. $GL_n(k)$ agit sur $\mathcal{M}_n(k)$ par similitude, via:

$$\cdot \begin{cases}
\operatorname{GL}_n(k) \times \mathcal{M}_n(k) & \to & \mathcal{M}_n(k) \\
(P, M) & \mapsto & P^{-1}MP
\end{cases}$$

Deux matrices sont dans la même orbite pour cette action si et seulement si elles sont semblables.

Théorème 45. Soit $m, n \in \mathbb{N}$. On considère l'action de $GL_n(\mathbb{K})$ par multiplication à quuche sur l'espace $\mathcal{M}_n(\mathbb{K})$. Alors :

- Deux matrices A et A' de $\mathcal{M}_n(\mathbb{K})$ ont la même orbite si et seulement si elles ont le même noyau.
- Toute matrice est dans l'orbite d'une unique matrice échelonnée en ligne réduite : on a la réunion disjoints suivante :

$$\bigcup_{E\in\mathcal{E}_n} \operatorname{GL}_n(\mathbb{K}) \cdot E$$

Où \mathcal{E}_n désigne l'ensemble des matrices échelonnées réduites de taille $n \times n$.

Remarque 46. Le théorème précédent se démontre via l'algorithme du pivot de Gauss. Partant d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$, on la multiplie à gauche par des matrices élémentaires pour obtenir une matrice d'abord échelonnée en lignes, puis échelonnée en lignes réduite en annulant les coefficients éventuels au-dessus des pivots. On trouve alors P inversible telle que PA soit échelonnée réduite.

Théorème 47. (Spectral)

Le groupe orthogonal $\mathcal{O}_n(\mathbb{R})$ agit sur l'ensemble des matrices symétriques réelles $\mathcal{S}_n(\mathbb{R})$ par similitude, et chaque orbite contient une matrice diagonale. Ces orbites sont caractérisées par les valeurs propres (comptées avec multiplicité) des matrices qui les composent.

Théorème 48. (Sulvester)

 $\mathrm{GL}_n(\mathbb{R})$ agit sur $\mathcal{S}_n(\mathbb{R})$ par congruence, via:

$$\cdot \begin{cases} \operatorname{GL}_n(\mathbb{R}) \times \mathcal{S}_n(\mathbb{R}) & \to \quad \mathcal{S}_n(\mathbb{R}) \\ (P, M) & \mapsto \quad {}^t PMP \end{cases}$$

Chaque orbite contient un représentant de la forme :

$$\left(\begin{array}{cc}I_p\\&I_q\\&0_{n-r}\end{array}\right)$$

Où r=p+q est le rang des matrices de cette orbite. Le couple (p,q) est appelé la signature.

3.3 Elements de topologie de GL(E)

Proposition 49. $GL_n(k)$ est un ouvert dense de $M_n(k)$.

Application 50. L'application det est différentiable sur $M_n(k)$, de différentielle $D_A \det(H) = \text{Tr}(\text{Com}(A^T) \cdot H)$.

Développement 2 :

Théorème 51. Soit $\varphi: (S^1, \times) \to (\operatorname{GL}_n(\mathbb{R}), \times)$ un morphisme de groupes continu. Il existe $Q \in \operatorname{GL}_n(\mathbb{R})$, $r \in \mathbb{N}$, $k_1, \ldots, k_r \in \mathbb{Z}^*$ tels que :

Où les matrices R_{tk_i} sont des matrices de rotation : $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ pour $\theta \in \mathbb{R}$.

Proposition 52. $GL_n(\mathbb{C})$ est connexe. $O_n(\mathbb{R})$ et $GL_n(\mathbb{R})$ ont deux composantes connexes.

Proposition 53. $O_n(\mathbb{R})$ et $SO_n(\mathbb{R})$ sont compacts.

Lemme 54. Soit $G \subset SO_3(\mathbb{R})$ un sous-groupe distingué et connexe par arcs, non réduit à $\{I_3\}$. Alors $G = SO_3(\mathbb{R})$.

Corollaire 55. $SO_3(\mathbb{R})$ est simple.

Proposition 56. Soit $A \in M_n(\mathbb{C})$. Alors $\mathbb{C}[A]^{\times}$ est un ouvert connexe dans $\mathbb{C}[A]$

Corollaire 57. L'exponentielle de matrices exp: $\mathcal{M}_n(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C})$ est surjective.